DETERMINISTIC CHARACTER OF CHANGES OF THE CASPIAN SEA LEVEL AND ITS QUANTITATIVE PARAMETERS
https://doi.org/10.18470/1992-1098-2014-1-17-25
Abstract
Abstract. The results of determination of parameters of dynamics of Caspian Sea level changes were studied. We determined quantities and dimensions of the phase space and the attractor, we calculated exponents of Lyapunov and assessed value of Kolmogorov – Sinai entropy based on analysis of time series by the change in the reservoir for 1931–2009.
Introduction. When interpreting the data on oscillatory phenomena an application of the theory of self-organization approaches becomes interesting, as it allows to set in a certain extent the behavior and evolution of the system regardless the nature of occurring in them processes.
Methods. During the preparation of article we applied a complex approach of nonlinear dynamics, consisting of the use of the discrete Fourier transform, the reconstruction of the dynamics of the time series with the construction of phase portraits and determining the dimensions of the phase space and attractor, calculation of Lyapunov exponents and Kolmogorov – Sinai entropy.
Results. It is found that Fourier spectrum–discrete; attractor dimension is expressed in non-integer number, and it is more than three; dimension of the phase space is equal to five; values of Lyapunov exponents correspond to: λ1> 0, λ2 = 0, λ3< 0; KS-entropy value is greater than zero (h = 0,018 ± 0,002); characteristic time that can be predicted by changes in the level corresponding to 58 - 60 days.
Conclusion. The analysis conducted by methods of nonlinear dynamics shows deterministic character of Caspian Sea level changes for 1931–2009 and realization of dynamic chaos.
Keywords
About the Author
U. G. MagomedbekovRussian Federation
M. Gadzhiev str., 43a, Makhachkala, Republic of Dagestan 367002 Russia
References
1. Berger P., Pomo K, Vidal K. 2000. Poryadok v khaose. O deterministskom podkhode k turbulentnosti [The order in chaos. On deterministic approach to turbulence]. Moscow: Mercury-PRESS. 366 p. (in Russian).
2. Ebert K., Ederer H. 1988. Komp’yutery. Primenenie v khimii [The computers. The applications in chemistry]. Moscow: Mir. 415 p. (in Russian).
3. Grasberger P., Procaccia I. 1983. Measuring the strangeness of strange attractor. Physica D. 9(1): 189–208.
4. Kornfeld I.P., Sinai A.G., Fomin S.V. 1980. Ergodicheskaya teoriya [Ergodic theory]. Moscow: Nauka. 383 p. (in Russian).
5. Lyapunov A.M. 2000. Obshchaya zadacha ob ustoychivosti dvizheniya [General problem of stability of motion]. Chernivtsy: Mercury-PRESS. 386 p. (in Russian).
6. Magomedbekov U.G., Gasangadzhieva U.G., Gasanova Kh.M., Magomedbekov N.Kh. 2011. Nonlinear (fluctuational) dynamics and mathematical modeling of homogenous oxidation of biological substrates. Russian Journal of General Chemistry.81(1): 247–257.
7. Magomedbekov U.G., Gasanova Kh.M. Gasangadzhieva U.G., Abdulkhamidov K.A., Mutsalova S.Sh. 2007. Chemical instabilities on the 1,4-naphtodiol oxidation in homogeneous medium. I. Determinate character of oxidation processes and its quantitative parameters. Moscow University Chemistry Bulletin. 62(3): 172–176.
8. Malineskii G.G., Potapov A.B. 2000. Sovremennye problemy nelineynoy dinamiki [Modern problems of nonlinear dynamics]. Moscow: Editorial URSS. 336 p. (in Russian).
9. Malinin V.N. 1994. Problema prognoza urovnya Kaspiyskogo morya [The problem of forecasting the level of the Caspian Sea]. Saint Petersburg: Russian State Hydrometeorological Institute Publ. 160 p. (in Russian).
10. Monakhov A.M., Butaev A.M. 2011. Uroven’ Kaspiyskogo morya za 1931–2009 g.g. [The level of the Caspian Sea in 1931–2009]. Available at: http://caspiy.net/stati/48-uroven-kaspijskogo-morya-za-1931-2009-gg.html (in Russian).
11. Naydenov V.I. 2004. Nelineynaya dinamika poverkhnostnykh vod sushi [Nonlinear dynamics of surface waters]. Moscow: Nauka. 318 p. (in Russian).
12. Otnes R., Enochson L. 1982. Prikladnoy analiz vremennykh ryadov. Osnovnye metody [Applied time series analysis]. Moscow: Mir. 428 p. (in Russian).
13. Packard N.H., Crutchfield J.P., Farmer J.D., Shaw R.S. 1980. Geometry from a time series. Physical Review Letters. 45: 712–715.
14. Polak A.S., Mikhailov A.S. 1989. Samoorganizatsiya v neravnovesnykh fiziko-khimicheskikh sistemakh [Self-organization in nonequilibrium physical-chemical systems]. Moscow: Nauka. 286 p. (in Russian).
15. Prigogine I., Nikolis G. 2003. Poznanie slozhnogo. Vvedenie [Exploring complexity. An introduction]. Moscow: LKI. 344 p. (in Russian).
16. Rainer H., Holger K., Thomas S. 2000. TISEAN 2.1 (December 2000) Nonlinear Time Series Analysis. Available at: http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.1.
17. Takens F. 1985. On the numerical determination of dimensions of an attractor. In: Lecture Notes in Math. Vol. 1025. Berlin: Springer: 99–106.
18. Timashev S.F. 2007. Flikker-shumovaya spektroskopiya: informatsiya v khaoticheskikh signalakh [Flicker-noise spectroscopy: the information in chaotic signals]. Moscow: Fizmatlit. 248 p. (in Russian).
19. Zadiraka V.K. 1983. Teoriya vychislitel'nogo preobrazovaniya Fur’e [Theory of computing the Fourier transform]. Kiev: Naukova dumka. 273 p. (in Russian).
Review
For citations:
Magomedbekov U.G. DETERMINISTIC CHARACTER OF CHANGES OF THE CASPIAN SEA LEVEL AND ITS QUANTITATIVE PARAMETERS. South of Russia: ecology, development. 2014;9(1):17-25. (In Russ.) https://doi.org/10.18470/1992-1098-2014-1-17-25