Preview

South of Russia: ecology, development

Advanced search

Viral vector‐borne pathogens in ticks from natural habitats in the European part of Russia

https://doi.org/10.18470/1992-1098-2025-3-2

Abstract

The aim of the work was to identify viruses transmitted by transmission in hard ticks collected in several regions of the European part of Russia.

The viral RNA of ticks of the genus Ixodes, collected from natural foci of tick‐borne encephalitis in the Astrakhan region, Karelia and Stavropol Krai, was studied by PCR and sequencing of the obtained virus‐specific DNA fragments.

Genomic markers of viruses of the Flaviviridae, Phenuiviridae and Nairoviridae families were found in ticks collected in the Astrakhan Region, Republic of Karelia and Stavropol krai.

Genetic markers of viruses previously not described for Russia were found in Ixodes ticks collected in the Astrakhan Region, Republic of Karelia and Stavropol krai. Natural foci of tick‐borne infections tend to expand their range, and, therefore, research to identify new viruses ecologically associated with ixodid ticks is becoming increasingly important.

About the Authors

V. A. Ternovoi
Vector State Research Centre of Virology and Biotechnology, Rospotrebnadzor, World‐class Center for Genomic Research to Ensure Biological Safety and Technological Independence within the Framework of the Federal Scientific and Technical Program for the Development of Genetic Technologies
Russian Federation

Vladimir A. Ternovoi, PhD, Acting Head, Department  of Molecular Virology and Viral Hepatitis, Leading Researcher

Koltsovo, Novosibirsk, Novosibirskiy region, 630559

Tel. +79137355577 



E. P. Ponomareva
Vector State Research Centre of Virology and Biotechnology, Rospotrebnadzor, World‐class Center for Genomic Research to Ensure Biological Safety and Technological Independence within the Framework of the Federal Scientific and Technical Program for the Development of Genetic Technologies
Russian Federation

Eugenia P. Ponomareva

Koltsovo, Novosibirsk Region



N. L. Tupota
Vector State Research Centre of Virology and Biotechnology, Rospotrebnadzor, World‐class Center for Genomic Research to Ensure Biological Safety and Technological Independence within the Framework of the Federal Scientific and Technical Program for the Development of Genetic Technologies
Russian Federation

Natalia L. Tupota

Koltsovo, Novosibirsk Region



M. A. Stepanyuk
Vector State Research Centre of Virology and Biotechnology, Rospotrebnadzor, World‐class Center for Genomic Research to Ensure Biological Safety and Technological Independence within the Framework of the Federal Scientific and Technical Program for the Development of Genetic Technologies
Russian Federation

Marina A. Stepanyuk

Koltsovo, Novosibirsk Region



M. Yu. Kartashov
Vector State Research Centre of Virology and Biotechnology, Rospotrebnadzor, World‐class Center for Genomic Research to Ensure Biological Safety and Technological Independence within the Framework of the Federal Scientific and Technical Program for the Development of Genetic Technologies
Russian Federation

Mikhail Yu. Kartashov

Koltsovo, Novosibirsk Region



R. B. Bayandin
Vector State Research Centre of Virology and Biotechnology, Rospotrebnadzor, World‐class Center for Genomic Research to Ensure Biological Safety and Technological Independence within the Framework of the Federal Scientific and Technical Program for the Development of Genetic Technologies
Russian Federation

Roman B. Bayandin

Koltsovo, Novosibirsk Region



T. V. Tregubchak
Vector State Research Centre of Virology and Biotechnology, Rospotrebnadzor, World‐class Center for Genomic Research to Ensure Biological Safety and Technological Independence within the Framework of the Federal Scientific and Technical Program for the Development of Genetic Technologies
Russian Federation

Tatyana V. Tregubchak

Koltsovo, Novosibirsk Region



A. P. Agafonov
Vector State Research Centre of Virology and Biotechnology, Rospotrebnadzor, World‐class Center for Genomic Research to Ensure Biological Safety and Technological Independence within the Framework of the Federal Scientific and Technical Program for the Development of Genetic Technologies
Russian Federation

Alexander P. Agafonov

Koltsovo, Novosibirsk Region



References

1. Anderson J.F., Magnarelli L.A. Biology of ticks. Infectious Disease Clinics of North America, 2008, vol. 22, no. 2, pp. 195–215. https://doi.org/10.1016/j.idc.2007.12.006

2. Guglielmone A.A., Robbins R.G., Apanaskevich D.A., Petney T.N., Estrada‐Peña A., Horak I. G., Shao R., Barker S.C. The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida) of the world:a list of valid species names. Zootaxa. 2010, vol. 28, pp. 27–54.

3. Kazimirova M., Thangamani S., Bartikova P., Hermance M., Holikova V., Stibraniova I., Nuttall P.A. Tick‐borne viruses and biological processes at the tick‐host‐virus interface. Frontiers in Cellular and Infection Microbiology, 2017, vol. 7, P.339. https://doi.org/10.3389/fcimb.2017.00339

4. Hermance M.E., Thangamani S. Powassan virus: An emerging arbovirus of public health concern in North America. Vector‐Borne and Zoonotic Diseases, 2017, vol. 17, no. 7, pp. 453–462. https://doi.org/10.1089/vbz.2017.2110

5. Gould E.A., Solomon T. Pathogenic flaviviruses. Lancet, 2008, vol. 371, pp. 500–509. https://doi.org/10.1016/S0140‐6736(08)60238‐X

6. Hawman D.W., Feldmann H. Crimean‐Congo haemorrhagic fever virus. Nature reviews. Microbiology, 2023, vol. 21, no.7, pp. 463– 477. https://doi.org/10.1038/s41579‐023‐00871‐9

7. Harris E.K., Foy B.D., Ebel G.D. Colorado tick fever virus: a review of historical literature and research emphasis for a modern era. Journal of medical entomology, 2023, vol. 60, no. 6, pp. 1214–1220. https://doi.org/10.1093/jme/tjad094

8. McMullan L.K., Folk S.M., Kelly A.J., MacNeil A., Goldsmith C.S., Metcalfe M.G., Batten B.C., Albarino C.G., Zaki S.R., Rollin P.E., et al. A new phlebovirus associated with severe febrile illness in Missouri. The New England Journal of Medicine, 2012, vol. 367, no. 9, pp. 834– 841. https://doi.org/10.1056/NEJMoa1203378

9. Zhang Y.Z., Zhou D.J., Xiong Y., Chen X.P., He Y.W., Sun Q., Yu B., Li J., Dai Y.A., Tian J.H., et al. Hemorrhagic fever caused by a novel tickborne bunyavirus in huaiyangshan, China. Zhonghua Liu Xing Bing Xue Za Zhi, 2011, vol. 32, no. 3, pp. 209–220.

10. Zhang Y.Z., He Y.W., Dai Y.A., Xiong Y., Zheng H., Zhou D.J., Li J., Sun Q., Luo X.L., Cheng Y.L., et al. Hemorrhagic fever caused by a novel bunyavirus in China: Pathogenesis and correlates of fatal outcome. Clinical Infectious Diseases, 2012, vol. 54, pp. 527–533. https://doi.org/10.1093/cid/cir804

11. Yadav P.D., Whitmer S.L.M., Sarkale P., et al. Characterization of Novel Reoviruses Wad Medani Virus (Orbivirus) and Kundal Virus (Coltivirus) Collected from Hyalomma anatolicum Ticks in India during Surveillance for Crimean Congo Hemorrhagic Fever. Journal of Virology, 2019, vol. 93, no. 13, article id: e00106‐19. https://doi.org/10.1128/JVI.00106‐19

12. Shi J., Hu Z., Deng F., Shen S. Tick‐Borne Viruses. Virologica Sinica, 2018, vol. 33, no. 1, pp. 21–43. https://doi.org/10.1007/s12250‐018‐0019‐0

13. Zhang Y., Hu B., Agwanda B., Fang Y., Wang J., Kuria S., Yang J., Masika M., Tang S., Lichoti J., Fan Z., Shi Z., Ommeh S., Wang H., Deng F., Shen S. Viromes and surveys of RNA viruses in camelderived ticks revealing transmission patterns of novel tick‐borne viral pathogens in Kenya. Emerging Microbes & Infections, 2021, vol. 10, no. 1, pp. 1975–1987. https://doi.org/10.1080/22221751.2021.1986428

14. Kartashov M.Yu., Mikryukova T.P., Krivosheina E.I., Kuznetsov A.I., Glushkova L.I., Korabelnikov I.V., Egorova Yu.I., Ternovoi V.A., Loktev V.B. Genotyping of pathogens of tick‐borne encephalitis and Kemerovo fever in taiga ticks collected in the Komi Republic. Infection and immunity, 2020, vol. 10, no. 1, pp. 159–166. (In Russia) http://dx.doi.org/10.15789/2220‐7619‐GOT‐1147

15. Law J., Jovel J., Patterson J., Ford G., O’Keefe S., Wang W., Meng B., Song D., Zhang Y., Tian Z., Wasilenko S.T., Rahbari M., Mitchell T., Jordan T., Carpenter E., Mason AL., Wong GK. Identification of hepatotropic viruses from plasma using deep sequencing: a next generation diagnostic tool. PLoS One, 2013, vol. 8, no. 4, article id: e60595. https://doi.org/10/1371/journal.pone.0060595

16. Okonechnikov K., Golosova O., Fursov M. The UGENE team. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics, 2012, vol. 28, no. 8, pp. 1166–1167. https://doi.org/10.1093/bioinformatics/bts091

17. Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 2015, vol. 33, no. 7, pp. 1870–1874. https://doi.org/10.1093/molbev/msw054

18. Saitou N., Nei M. The neighbor‐joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 1987, vol. 4, no. 4, pp. 406‐425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

19. Confidence interval calculator. Available at: http://www.pedro.org.au/english/downloads/confidence‐intervalcalculator (accessed 18.04.2025)

20. Kodama F., Yamaguchi H., Park E., Tatemoto K. A novel nairovirus associated with acute febrile illness in Hokkaido, Japan. Nature Communications, 2021, vol. 12, no. 1, pp. 5539–5547. https://doi.org/10.1038/s41467‐021‐25857‐0

21. Nishino A., Tatemoto K., Ishijima K., Inoue Y., Park E.‐S., Yamamoto T., Taira M., Kuroda Y., Virhuez‐Mendoza M., Harada M., Nakamura N., Morimoto G., Yamaguchi H., Ariizumi T., Takano A., Shimoda H., Matsuno K., Maeda K. Transboundary Movement of Yezo Virus via Ticks on Migratory Birds, Japan, 2020‐2021. Emerging Infectious Diseases, 2024, vol. 30. no. 12, pp. 2674–2678. https://doi.org/10.3201/eid3012.240539

22. Zhang M.‐Z., Bian C., Ye R.‐Z., Cui X.‐M., Yao N.‐N., Yang J.‐H., Chu Y.‐L., Su X.‐L., Wu Y.‐F., Ye J.‐L., Liu S.‐S., Shi X.‐Y., Shi W., Jia N., Chen Y.‐G., Zhao L., Zheng Y.‐C., Zheng X.‐M., Jiang J.‐F., Cao W.‐C. A series of patients infected with the emerging tick‐borne Yezo virus in China: an active surveillance and genomic analysis. The Lancet Infectious Diseases, 2025, vol. 25, no. 4, pp. 390–398. https://doi.org/10.1016/S1473‐3099(24)00616‐9

23. Wang R., Wang X., Zhu J., Li H., Liu W. Effectiveness of nucleoside analogs against Wetland virus infection. Antiviral Research, 2025, vol. 236, article id: 106114. https://doi.org/10.1016/j.antiviral.2025.106114

24. Schwarz L., Riedel C., Högler S., Sinn L.J., Voglmayr T., Wöchtl B., Dinhopl N., Rebel‐Bauder B., Weissenböck H., Ladinig, A., et al. Congenital infection with atypical porcine pestivirus (APPV) is associated with disease and viral persistence. Veterinary Research, 2017, vol. 48, pp. 1–14. https://doi.org/10.1186/s13567‐016‐0406‐1

25. Manjunatha N.B., Sushila M., Narender S.M., Joe B., Robert T., Houssam A., Peter P.C.M. Genetic Characterization of the Tick‐Borne Orbiviruses. Viruses, 2015, vol. 7, no. 5, pp. 2185–2209. https://doi.org/10.3390/v7052185

26. Tokarz R., Williams S.H., Sameroff S., et al. Virome analysis of amblyomma americanum, dermacentor variabilis, and Ixodes scapularis ticks reveals novel highly divergent vertebrate and invertebrate viruses. Journal of Virology, 2014, vol. 88, no. 19, pp. 11480–11492. https://doi.org/10.1128/JVI.01858‐14

27. Belhouchet M., Mohd Jaafar F., Firth A.E., Grimes J.M., Mertens P.P., Attoui H. Detection of a fourth orbivirus non‐structural protein. PLOS ONE, 2011, vol. 6, article id: e25697. https://doi.org/10.1371/journal.pone.0025697

28. Ratinier M., Caporale M., Golder M., Franzoni G., Allan K., Nunes S.F., Armezzani A., Bayoumy A., Rixon F., Shaw A., et al. Identification and characterization of a novel non‐structural protein of bluetongue virus. PLOS Pathog, 2011, vol. 7, article id: e1002477. https://doi.org10.1371/journal.ppat.1002477

29. Mertens P.P., Brown F., Sangar D.V. Assignment of the genome segments of bluetongue virus type 1 to the proteins which they encode. Virology, 1984, vol. 135, pp. 207–217. https://doi.org/10.1016/0042‐6822(84)90131‐4

30. OIE. Terrestrial Animal Health Code. Available at: https://www.oie.int/en/what‐we‐do/standards/codes‐andmanuals/terrestrial‐code‐online‐access/ (accessed 18.04.2025)

31. Kirkland P.D., Frost M.J., Finlaison D.S., King K.R., Ridpath J.F., Gu X. Identification of a novel virus in pigs‐bungowannah virus: A possible new species of pestivirus. Virus Research, 2007, vol. 129, pp. 26–34. https://doi.org/10.1016/j.virusres.2007.05.002

32. Michelitsch A., Dalmann A., Wernike K., Reimann I., Beer M. Seroprevalences of newly discovered porcine pestiviruses in german pig farms. Veterinary Sciences, 2019, vol. 6, pp. 86. https://doi.org/10.3390/vetsci6040086

33. Mósena A.C.S., Weber M.N., Cibulski S.P., Silva M.S., Paim W.P., Silva G.S., Medeiros A.A., Viana N.A., Baumbach L.F., Puhl D.E., et al. Survey for pestiviruses in backyard pigs in southern Brazil. Journal of Veterinary Diagnostic Investigation, 2020, vol. 32, pp. 136–141. https://doi.org/10.1177/1040638719896303

34. Yuan J., Han Z.; Li J., Huang Y., Yang J., Ding H., Zhang J., Zhu M., Zhang Y., Liao J., et al. Atypical porcine pestivirus as a novel type of pestivirus in pigs in China. Frontiers in Microbiology, 2017, vol. 8, article id: 862. https://doi.org/10.3389/fmicb.2017.00862

35. Beer M., Wernike K., Dräger C., Höper D., Pohlmann A., Bergermann C., Schröder C., Klinkhammer S., Blome S., Hoffmann B. High prevalence of highly variable atypical porcine pestiviruses found in Germany. Transboundary and Emerging Diseases, 2017, vol. 64, pp. e22–e26. https://doi.org/10.1111/tbed.12532

36. Kartashov M.Y., Gladysheva A.V., Shvalov A.N., Tupota N.L., Chernikova A.A., Ternovoi V.A., Loktev V.B. Novel Flavi‐like virus in ixodid ticks and patients in Russia. Ticks and Tick‐borne Diseases, 2023, vol. 14, article id: .102101. 37. Current ICTV Taxonomy Release. Available at: https://doi.org/10.1016/j.ttbdis.2022.102101 https://ictv.global/taxonomy (accessed 18.04.2025)


Review

For citations:


Ternovoi V.A., Ponomareva E.P., Tupota N.L., Stepanyuk M.A., Kartashov M.Yu., Bayandin R.B., Tregubchak T.V., Agafonov A.P. Viral vector‐borne pathogens in ticks from natural habitats in the European part of Russia. South of Russia: ecology, development. 2025;20(4):24‐34. (In Russ.) https://doi.org/10.18470/1992-1098-2025-3-2

Views: 44

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1992-1098 (Print)
ISSN 2413-0958 (Online)