Inhibitory activity of tea compositions and their constituent ingredients on SARS‐COV‐2 replication in vitro
https://doi.org/10.18470/1992-1098-2022-2-76-90
Abstract
Aim. In vitro analysis of the inhibitory activity of aqueous extracts of ready‐made tea compositions and their constituent ingredients on SARSCOV‐ 2 replication.
Material and Methods. The laboratory strain SARS‐CoV‐ 2/human/RUS/Nsk‐FRCFTM‐1/2020 was passivated on Vero cell culture. For the preparation of water extracts six types of experimental tea compositions (not containing flavorings) based on black and green tea or flowers of hibiscus as well as individual ingredients were used. Antiviral (inhibitory) activity of plant raw materials was studied in vitro according to the classical scheme of neutralization (inactivation) of the virus.
Results. When compared with the main control sample of an aqueous extract of chaga (Inonotus obliquus) with a 50% effective concentration equal to 13.72±2.99 μg/ml against 103 TCPD50/ml of SARS‐CoV‐2, superior activity was found for extracts of the spice Syzygium aromaticum L. and black tea from Nepal. Approximately equal inhibitory activity was detected for extracts of tea compositions based on black tea with the addition of the grass Thymus altaicus and the spice S. aromaticum L. or with the addition of seeds of Carum carvi L. and the root of Angelica archangelica L. In addition, such activity was detected for extracts of tea compositions based on green tea from China with the addition of leaves of Mentha piperita L. and flowers of Lavandula angustifolia MILL. or with the addition of the peel of Citrus sinensis L. and seeds of Pimpinella anisum L. Extracts from individual plant raw materials used to make tea compositions were black teas from India, Argentina, Vietnam and Sri Lanka, leaves of M. piperita L. and flowers of L. angustifolia MILL. Cetraria islandica lichen, green tea and berries of Oxycoccus also showed antiviral activity.
Conclusion. The results obtained suggest that tea compositions based on black and green tea with the addition of various plant raw materials in the form of a regular drink can be useful to people with COVID‐19 infection.
About the Authors
Е. I. КаzachinskaiaRussian Federation
Еlena I. Каzachinskaia, Doctor of Biology, Leading Researcher of the Research Institute of Virology
Prospekt Koltsovo 32‐1, Novosibirsk, Novosibirskiy region, 630559
Теl. +79095307441
Competing Interests:
The authors declare no conflict of interest
А. А. Chepurnov
Russian Federation
Аlexander А. Chepurnov
Novosibirsk
Competing Interests:
The authors declare no conflict of interest
Yu. V. Коnonova
Russian Federation
Yulia V. Коnonova
Novosibirsk
Competing Interests:
The authors declare no conflict of interest
А. А. Shelemba
Russian Federation
Аrseniya А. Shelemba
Novosibirsk
Competing Interests:
The authors declare no conflict of interest
V. V. Romanyuk
Russian Federation
Vladimir V. Romanyuk
Novosibirsk
Competing Interests:
The authors declare no conflict of interest
M. G. Magomedov
Russian Federation
Magomed G. Magomedov
Makhachkala
Competing Interests:
The authors declare no conflict of interest
А. М. Shestopalov
Russian Federation
Аlexander М. Shestopalov
Novosibirsk
Competing Interests:
The authors declare no conflict of interest
References
1. Yu X., Xiao J., Chen S., Yu Y., Ma J., Lin Y., Li R., Lin J., Fu Z., Zhou Q., Chao Q., Chen L., Yang Z, Liu R. Metabolite signatures of diverse Camellia sinensis tea populations. Nat Commun., 2020, vol. 11, no. 1, article number: 5586. DOI: 10.1038/s41467-020-19441-1
2. Mhatre S., Srivastava T., Naik S., Patravale V. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review. Phytomedicine, 2021, vol. 85, article number: 153286. DOI: 10.1016/j.phymed.2020.153286
3. Wang L., Song J., Liu A., Xiao B., Li S., Wen Z., Lu Y., Du G. Research Progress of the Antiviral Bioactivities of Natural Flavonoids. Nat Prod Bioprospect., 2020, vol. 10, no. 5, pp. 271-283. DOI: 10.1007/s13659-020-00257-x
4. Zeng L., Watanabe N., Yang Z. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma. Crit. Rev. Food Sci., 2019, no. 59, pp. 2321-2334. DOI: 10.1080/10408398.2018.1506907
5. Chen S., Li M., Zheng G., Wang T., Lin J., Wang S., Wang X., Chao Q., Cao S., Yang Z., Yu X. Metabolite Profiling of 14 Wuyi Rock Tea Cultivars Using UPLC-QTOF MS and UPLC-QqQ MS Combined with Chemometrics. Molecules, 2018, vol. 23, no. 2, pp. 104. DOI: 10.3390/molecules23020104
6. Zakaryan H., Arabyan E., Oo A., Zandi K. Flavonoids: promising natural compounds against viral infections. Arch Virol., 2017, vol. 162, no. 9, pp. 2539-2551. DOI: 10.1007/s00705-017-3417-y
7. Jo S., Kim S., Shin D.H., Kim M.-S. Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem., 2020, vol. 35, no. 1, pp. 145-151. DOI: 10.1080/14756366.2019.1690480
8. Mhatre S., Naik S., Patravale V. A molecular docking study of EGCG and theaflavin digallate with the druggable targets of SARS- CoV-2. Comput Biol Med., 2021, no, 129, article number: 104137. DOI: 10.1016/j.compbiomed.2020.104137
9. Ahn D.-G., Shin H.-J., Kim M.-H., Lee S., Kim H.-S., Myoung J., Kim B.-T., Kim S.-J. Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for Novel Coronavirus Disease 2019 (COVID-19). J Microbiol Biotechnol., 2020, vol. 30, no. 3, pp. 313-324. DOI: 10.4014/jmb.2003.03011
10. Hodgson S.H., Mansatta K., Mallett G., Harris V., Emary K.R.W., Pollard A.J. What defines an efficacious COVID-19 vaccine? A review of the challenges assessing the clinical efficacy of vaccines against SARS-CoV-2. Lancet Infect Dis., 2021, vol. 21, no. 2, article number: e26-e35. DOI: 10.1016/S1473-3099(20)30773-8
11. Abd El-AzizT.M., StockandJ.D. Recent progress and challengesin drug development against COVID-19 coronavirus (SARS-CoV-2) - an update on the status. Infect Genet Evol., 2020, no. 83, article number: 104327. DOI: 10.1016/j.meegid.2020.104327
12. Report FDA. Coronavirus (COVID-19) Update: FDA Revokes Emergency Use Authorization for Chloroquine and Hydroxychloroquine. Available at: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-revokes-emergency-use-authorization-chloroquine-and (accessed 25.03.2021)
13. Report World Health Organization. Available at: https://www.who.int/ru/news/item/04-07-2020-who-discontinues-hydroxychloroquine-and-lopinavir-ritonavir-treatment-arms-for-covid-19 (accessed 25.03.2021)
14. Furuta Y., Komeno T., Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci., 2017, vol. 93, no. 7, pp. 449-463. DOI: 10.2183/pjab.93.027
15. Li G., Clercq E.D. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov., 2020, vol. 19, no. 3, pp. 149-150. DOI: 10.1038/d41573-020-00016-0
16. Report. The drug was approved for the treatment of COVID-19 in the hospital settings in Russia on May 29, 2020, after an ongoing open-label randomized clinical trial had recruited 60 subjects on favipiravir. Available at: https://economictimes.indiatimes.com/industry/healthcare/biotech/pharmaceuticals/russian-drug-to-treat-covid-to-be-delivered-to-hospitals-in-june/articleshow/76131135.cms/2020 (accessed 22.08.2020)
17. DoiY., Hibino M., Ryota H., Michiko Y., Kasamatsu Y., Hirose M., Mutoh Y., Homma Y., Terada M., Ogawa T. et al. A Prospective, Randomized, Open-Label Trial of Early versus Late Favipiravir Therapy in Hospitalized Patients with COVID-19. Antimicrob Agents Chemother., 2020, vol. 64, no. 12, article number:e01897-20. DOI: 10.1128/AAC.01897-20
18. Joshi S., Parkar J., Ansari A., Vora A., Talwar D., Tiwaskar M., Patil S., Barkate H. Role of favipiravir in the treatment of COVID-19. Int J Infect Dis., 2021, no. 102, pp. 501-508. DOI: 10.1016/j.ijid.2020.10.069
19. Pardo J., Shukla A.M., ChamarthiG., Gupte A. The journey of remdesivir: from Ebola to COVID-19. Drugs Context., 2020, no. 9, article number: 2020-4-14. DOI: 10.7573/dic.2020-4-14
20. Batiha O., Al-Deeb T., Al-Zoubi E., Alsharu E. Impact of COVID-19 and other viruses on reproductive health. Andrologia, 2020, vol. 52, no. 9, article number: e13791. DOI: 10.1111/and.13791
21. Chepurnov A.A., Sharshov K.A., Kazachinskaya E.I., Kononova Yu.V., Kazachkova E.A., Khripko O.P., Yurchenko K.S., Alekseev A.Yu., Voevoda M.I., Shestopalov A.M. Antigenic properties of sARs-CoV-2/human/RUs/nsk-FRCFtM-1/2020 coronavirus isolate from a patient in Novosibirsk. Journal Infectology, 2020, vol. 12, no. 3, pp. 42-50. (In Russian) DOI: 10.22625/2072-6732-2020-12-3-42-50
22. Case J.B., Bailey A.L., Kim A.S., Chen R.E., DiamondM.S. Growth, detection, quantification, and inactivation of SARS-CoV-2. Virology, 2020, no. 548, pp. 39-48. DOI: 10.1016/j.virol.2020.05.015
23. Kazachinskaia E.I., Chepurnov A.A., Shcherbakov D.N, Kononova Yu.V., Shanshin D.V., Romanova V.D., Khripko O.P., Saroyan T.A., Gulyaeva M.A., Voevoda M.I., Shestopalov A.M. IgG Study of Blood Sera of Patients with COVID-19. Patogens, 2021, vol. 10, no. 11, article number: 1421. DOI: 10.3390/patogens10111421
24. Fisenko V.P. Rukovodstvo po eksperimental'nomu (doklinicheskomu) izucheniyu novykh farmakologicheskikh veshchestv [Guidelines for the experimental (preclinical) study of new pharmacological substances]. Moscow, Ministry of Health of the Russian Federation, closed joint-stock company «IIA» Remedium, 2000, 398 p. (In Russian)
25. Hassan S.T.S., Berchova-Bimova K., Šudomova M., Malanik M., Smejkal K., Rengasamy K.R.R. In Vitro Study of Multi-Therapeutic Properties of Thymus bovei Benth. Essential Oil and Its Main Component for Promoting Their Use in Clinical Practice. J. Clin. Med., 2018, no. 7, article number: 283. DOI: 10.3390/jcm7090283
26. Cheng H.-Y., Lin L.-T., Huang H.-H., Yang C.-M., Lin C.-C. Yin Chen Hao Tang, a Chinese prescription, inhibits both herpes simplex virus type-1 and type-2 infections in vitro. Antiviral Res., 2008, vol. 77, no. 1, pp. 14-9. DOI: 10.1016/j.antiviral.2007.08.012
27. Trujillo-Correa A.I., Quintero-Gil D.C., Diaz-CastilloF., Quiñones W., Robledo S.M., Martinez-Gutierrez M. In vitro and in silico anti- dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC Complement Altern Med., 2019, vol. 19, no. 1, article number: 298. DOI: 10.1186/s12906-019-2695-1
28. Nyayanit D.A., Sarkale P., Baradkar S., Patil S., Yadav P.D., Shete- Aich A., Kalele K., GawandeP., Majumdar T., Jain R., Sapkal G. Transcriptome & viral growth analysis of SARS-CoV-2-infected Vero CCL-81 cells. Indian J Med Res., 2020, vol. 152, no. 1 & 2, pp. 70-76. DOI: 10.4103/ijmr.IJMR_2257_20
29. Shahzad F., Anderson D., Najafzadeh M. The Antiviral, Anti- Inflammatory Effects of Natural Medicinal Herbs and Mushrooms and SARS-CoV-2 Infection. Nutrients, 2020, vol. 12, no. 9, article number: 2573. DOI: 10.3390/nu12092573
30. Тeplyakova T.V., Pyankov O.V., Skarnovich M.O., Bormotov N.I., Poteshkina A.L., Ovchinnikova A.S., Kosogova T.A., Magerramova A.V., Markovich N.A., Filippova E.I. Ingibitor replikatsii koronavirusa SARS-CoV-2 na osnove vodnogo ekstrakta griba Inonotus obliquus [An inhibitor of SARS-CoV-2 coronavirus replication based on an aqueous extract of the fungus Inonotus obliquus]. Patent of the Russian Federation no. 2741714C1 published in Bulletin of Inventions no. 4 28.01.2021. (In Russian)
31. Wang C., Ming H., Jia W., Su W., Zhan L.-R., Luo D., Yang J.-Y. Analysis of medication regularity and pharmacodynamic characteristics of traditional Chinese medicine treatment in 444 severe cases of COVID-19. Zhongguo Zhong Yao Za Zhi., 2020, vol. 45, no. 13, pp. 3007-3012. DOI: 10.19540/j.cnki.cjcmm.20200427.501
32. Tolah A.M., Altayeb L.M., Alandijany T.A., Dwivedi V.D., El- Kafrawy S.A., Azhar E.I. Computational and In Vitro Experimental Investigations Reveal Anti-Viral Activity of Licorice and Glycyrrhizin against Severe Acute Respiratory Syndrome Coronavirus 2. Pharmaceuticals (Basel), 2021, vol. 14, no. 12, article number: 1216. DOI: 10.3390/ph14121216
33. Vitalone A., Allkanjari O. Epilobium spp: Pharmacology and Phytochemistry. Phytother Res., 2018, vol. 32, no. 7, pp. 1229-1240. DOI: 10.1002/ptr.6072
34. Lu Y., Jia Y., Xue Z., Li N., Liu J., Chen H. Recent Developments in Inonotus obliquus (Chaga mushroom) Polysaccharides: Isolation, Structural Characteristics, Biological Activities and Application. Polymers (Basel), 2021, vol. 13, no. 9, article number: 1441. DOI: 10.3390/polym13091441
35. Wu C., Liu Y., Yang Y., Zhang P., Zhong W., Wang Y., WangQ., Xu Y., LiM., LiX., ZhengM., Chen L., Li H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B., 2020, vol. 10, no. 5, pp. 766-788. DOI: 10.1016/j.apsb.2020.02.008
36. Liu H., Ye F., Sun Q., Liang H., Li C., Li S., Lu R., Huang B., Tan W., Lai L. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro CoV-2. J Enzyme Inhib Med Chem., 2021, vol. 36, no. 1, pp. 497-503. DOI: 10.1080/14756366.2021.1873977
37. Song J., Zhang L., Xu Y., Yang D., Zhang L., Yang S., Zhang W., Wang J., Tian S., Yang S., Yuan T., Liu A., Lv Q., Li F., Liu H., Hou B., Peng X., Lu Y., Du G. The comprehensive study on the therapeutic effects of baicalein for the treatment of COVID-19 in vivo and in vitro. Biochem Pharmacol., 2021, no. 183, article number: 114302. DOI: 10.1016/j.bcp.2020.114302
38. Ni W.-J., Chen X.-X., Wei S.-Y., Lan L.-L., Qiu R.-J., Ling Y.-P., Zhou D.-S., Wu Z.-M., Cao Z.-H., Yu C.-P., Zeng Y. Study on the mechanism of active components of Liupao tea on 3CL pro based on HPLC-DAD fingerprint and molecular docking technique. J Food Biochem., 2021. V. 45. N 5. Article number: e13707. DOI: 10.1111/jfbc.13707
39. Sargin S.A.Potential anti-influenza effective plants used in Turkish folk medicine: A review. J Ethnopharmacol., 2021, vol. 265, article number: 113319. DOI: 10.1016/j.jep.2020.113319
40. Rashed A.A., Rathi D.-N.G., Nasir N.A.H.A., Rahman A.Z.A. Antifungal Properties of Essential Oils and Their Compounds for Nonconventional Approaches. Molecules, 2021, vol. 26, no. 4, article number: 1093. DOI: 10.3390/molecules26041093
41. Truong Q.L., Nguyen L.T., Babikian H.Y., Jha R.K., Nguyen H.T., To T.L. Natural oil blend formulation as an anti-African swine fever virus agent in in vitro primary porcine alveolar macrophage culture. Vet World., 2021, vol. 14, no. 3, pp. 794-802. DOI: 10.14202/vetworld.2021.794-802
42. Vicidomini C., Roviello V., RovielloG. Molecular Basis of the Therapeutical Potential of Clove (Syzygium aromaticum L.) and Clues to Its Anti-COVID-19 Utility. Molecules, 2021, vol. 26, no. 7, article number: 1880. DOI: 10.3390/molecules26071880
43. Tragoolpua Y., Jatisatienr A. Anti-herpes simplex virus activities of Eugenia caryophyllus (Spreng.). Phytother Res., 2007, vol. 21, no. 12, pp. 1153-1158. DOI: 10.1002/ptr.2226
44. Hussein G., Miyashiro H., Nakamura N., Hattori M., Kakiuchi N., Shimotohno K. Inhibitory effects of Sudanese medicinal plant extracts on hepatitis C virus (HCV) protease. Phytother. Res., 2000, no. 14, pp. 510-516. DOI: 10.1002/1099-1573(200011)14:7<510::AID-PTR646>3.0.CO;2-B
45. Dai J.-P., Zhao X.-F., Zeng J., Wan Q.-Y., Yang J.-C., Li W.-Z., Chen X.-X., Wang G.-F., Li K.-S. Drug screening for autophagy inhibitors based on the dissociation of Beclin1-Bcl2 complex using BiFC technique and mechanism of eugenol on anti-influenza A virus activity. PLoS ONE, 2013, no. 8, article number: e61026. DOI: 10.1371/journal.pone.0061026
46. Lane T., Anantpadma M., Freundlich J.S., Davey R.A., Madrid P.B., Ekins S. The natural product eugenol is an inhibitor of the ebola virus in vitro. Pharm. Res., 2019, no. 36, pp. 1-6. DOI: 10.1007/s11095-019-2629-0
47. Hassan S.T.S, Švajdlenka E., Berchová-Bímová K. Hibiscus sabdariffa L. and Its Bioactive Constituents Exhibit Antiviral Activity against HSV-2 and Anti-enzymatic Properties against Urease by an ESI-MS Based Assay. Molecules, 2017, vol. 22, no. 5, article number: 722. DOI: 10.3390/molecules22050722
48. Takeda Y., Okuyama Y., Nakano H., Yaoita Y., Machida K., Ogawa H., Imai K. Antiviral Activities of Hibiscus sabdariffa L. Tea Extract Against Human Influenza A Virus Rely Largely on Acidic pH but Partially on a Low-pH-Independent Mechanism. Food Environ Virol., 2020, vol. 12(1), pp. 9-19. DOI: 10.1007/s12560-019-09408-x
49. Aanouz I., Belhassan A., El-Khatabi K., Lakhlifi T., El-Ldrissi M., Bouachrine M. Moroccan Medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations. J Biomol Struct Dyn., 2021, vol. 39, no. 8, pp. 2971-2979. DOI: 10.1080/07391102.2020.1758790
50. Adhikari B., Marasini B.P., Rayamajhee B., Bhattarai B.R., Lamichhane G., Khadayat K., Adhikari A., Khanal S., Parajuli N. Potential roles of medicinal plantsfor the treatment of viral diseases focusing on COVID-19: A review. Phytother Res., 2021, vol. 35, no. 3, pp. 1298-1312. DOI: 10.1002/ptr.6893
51. Mazurkova N.A., Sedelnikova N.V., Makarevich E.V., Filippova E.I., Kostina N.E., Kukushkina T.A. Protivovirusnoe sredstvo na osnove sukhogo ekstrakta lishainika Cetraria islandica [Antiviral agent based on dry extract of lichen Cetraria islandica]. Russian Patent no. 2580305 published in Bulletin of Inventions no. 10 of 10.04.2016. (In Russian)
52. Ishimoto K., Hatanaka N., Otani S., Maeda S., Xu B., Yasugi M., Moore J.E., Suzuki M., Nakagawa S., Yamasaki S. Tea crude extracts effectively inactivate severe acute respiratory syndrome coronavirus 2. Lett Appl Microbiol., 2022, vol. 74, no. 1, pp. 2-7. DOI: 10.1111/lam.13591
53.
Review
For citations:
Каzachinskaia Е.I., Chepurnov А.А., Коnonova Yu.V., Shelemba А.А., Romanyuk V.V., Magomedov M.G., Shestopalov А.М. Inhibitory activity of tea compositions and their constituent ingredients on SARS‐COV‐2 replication in vitro. South of Russia: ecology, development. 2022;17(2):76-90. (In Russ.) https://doi.org/10.18470/1992-1098-2022-2-76-90