Preview

South of Russia: ecology, development

Advanced search

ISOCHORIC HEAT CAPACITY OF 1% AQUEOUS SOLUTION OF MAGNESIUM CHLORIDE

https://doi.org/10.18470/1992-1098-2016-2-121-131

Abstract

Aim. The aim is to conduct an experimental study of isochoric heat capacity of 1% aqueous solution of magnesium chloride along the phase boundary curve.

Method. In order to determine the isochoric heat capacity at the phase boundary curve we used the adiabatic calorimeter of KH. I. Amirkhanov.

Results. Results of the study of the isochoric heat capacity depending on the temperature are given in tables and figures; the findings are compared with those of other researchers. When evaluating a complex system, we ought not to evaluate its effectiveness on the basis of only one criterion, even a very important, in this case must take into account the requirements of the technical, economic, environmental and of other natures.

Conclusions. When solving optimization problems of efficiency in geothermal energy it is necessary to take into account the fact of the temperature dependence of the heat and density. The temperature dependence of the density and heat capacity in the calculations significantly affect the value of the efficiency criterion to be taken into account, otherwise the calculation error can be up to 20%. The data obtained from the isochoric heat capacity of aqueous solutions of magnesium chloride is compared with the data for water and aqueous solutions of NaCl and NaOH, obtained previously, which may be represented as a model of geothermal and sea water.

About the Authors

V. I. Dvoryanchikov
Laboratory of Thermophysics of geothermal systems, Institute of Geothermal Problems, Dagestan Scientific Center, Russian Academy of Sciences, Makhachkala, Russia
Russian Federation

Doctor of Technical Sciences, Senior Researcher, Institute of Geotheemal Problems of the Dagestan Scientific Centre of Russian Academy of Sciences. Phone number +79634115657. 39a I.Shamilya street Makhachkala, 367030 Russia



D. K. Djavatov
Laboratory of Energetics, Institute of Geothermal Problems, Dagestan Scientific Center, Russian Academy of Sciences, Makhachkala, Russia
Russian Federation

Doctor of Technical Sciences, Senior Researcher, Institute of Geotheemal Problems of the Dagestan Scientific Centre of Russian Academy of Sciences, Makhachkala, Russia



G. A. Rabadanov
Laboratory of physical chemistry of thermal waters, Institute of Geothermal Problems, Dagestan Scientific Center, Russian Academy of Sciences, Makhachkala, Russian
Russian Federation

Сandidate of сhemical Sciences, Senior Researcher, Institute of Geotheemal Problems of the Dagestan Scientific Centre of Russian Academy of Sciences, Makhachkala, Russia



E. G. Iskenderov
Laboratory of low-grade heat and solar energy storage, Branch of the Joint Institute for High Temperatures of the Russian Academy of Sciences, Makhachkala, Russia
Russian Federation

Candidate of Chemical Sciences, Senior Researcher, Federal State Institution of Science, Joint Institute for High Temperatures of the Russian Academy of Sciences, Makhachkala, Russia



D. P. Shikhakhmedova
Laboratory of Thermophysics of geothermal systems, Institute of Geothermal Problems, Dagestan Scientific Center, Russian Academy of Sciences, Makhachkala, Russia
Russian Federation

postgraduate student, Institute of Geothermal Problems, Dagestan Scientific Center, Russian Academy of Sciences, Makhachkala, Russia



References

1. Makarov A.A., Fortov V.E. Trends in the world of energy and energy strategy of Russia. Vestnik Rossiiskoi akademii nauk [Bulletin of the Russian Academy of Sciences]. 2004. vol. 24, no. 3. pp. 195-208. (In Russian)

2. Bezrukikh P.P. Why Russia Renewable Energy. Energiya: ekonomika, tekhnika, ekologiya [Energy: economics, technology, and ecology]. 2002. no. 10. pp. 2-8. (In Russian)

3. Types and geothermal power plants. Warme und Strom aus der Tiefe. Shuiz Anja. Sonne Wind und Wind und Warme. 2001. no. 4. P.71-73.

4. Povarov O.A., Tomarov G.V. World Geothermal Congress. Teploenergetika [Thermal Engineering]. 2001. no. 2. pp. 74-77. (In Russian)

5. Djavatov D.K, Dvoryanchikov V.I. The temperature dependence of the thermodynamic parameters of geothermal fluids in optimization problems geothermal systems. Izvestiya vuzov. Severokavkazskii region. Tekhnicheskie nauki [University news. North-Caucasian region. Technical sciences series]. 2006. no. 3. pp. 69- 73. (In Russian)

6. Dvoryanchikov V.I., Abramova E.G., Abdurashidova A.A. Isochoric heat capacity of aqueous solutions of Na2 CO3 near the line of phase equilibrium. Teplofizika i aeromekhanika [Thermophysics and Aeromechanics]. 2000. vol. 7, no. 4. pp. 573-579. (In Russian)

7. Abdulagatov I.M., Dvoryanchikov V.I. Isochoric heat capacity of binary systems NaOH + H2 O and KOH + H2 O near the critical point of pure water. Geokhimiya [Geochemistry]. 1994. no. 1. pp. 101-110. (In Russian)

8. Abdulagatov I.M., Dvoryanchikov V.I. Thermodynamic properties of geothermal fluids. Geokhimiya [Geochemistry]. 1995. no. 5. pp. 612-620. (In Russian)

9. Abdulagatov I.M., Dvoryanchikov V.I., Kamalov A.N. Measurements of the heat capacity at constant volume of H2O and (H2O+ KNO3). J. Chem. Thermodynamics. 1997. V.29. pp. 1387-1407.

10. Abdulagatov I.M., Rabinovich V.A., Dvoryanchikov V.I. Thermodynamic Properties of Fluid Mixtures Neat the Critical Point. Begelle House. New York. Wallingford (UK). 1999. 350 p.

11. Amirhanov H.I., Stepanov G.V., Alibеkov B.G. Izokhornaya teploemkost' vody i vodyanogo para [Isochoric heat capacity of water steam]. Makhachkala. Dagestan branch of the Academy of Sciences of the USSR Publ., 1969. 216 p. (In Russian)

12. Dibirov Ya.A., Iskenderov E.G., Aliyev M.M. Ustanovka DTA s analogovo-tsifrovym preobrazovatelem [Installing DTA with the analog-to-digital converter]. XIV Mezhdunarodnaya konferentsiya po termicheskomu analizu i kalorimetrii v Rossii (RTAC-2013), Sankt-Peterburg, 23-28 sentyabrya 2013 [XIV International Conference on Thermal Analysis and Calorimetry in Russia (RTAC-2013), St. Petersburg, 23-28 September 2013]. St. Petersburg, 2013, pp. 397-404. (In Russian)

13. Alexandrov A.A., Grigoriev B.A. Tablitsy teplofizicheskikh svoistv vody i vodyanogo para [Tables of thermophysical properties of water and steam]. Moscow, MEI Publ., 2003. 164 p. (In Russian)

14. Senay Likke and LeRoy A. Bromley. Heat Capacities of Aqueous NaCl, KCl, MgCl2, MgSO4 and Na2SO4, Solutions Between 80o and 200oC. Journal of Chemica and Engineering Data. 1973. Vol. 18. no. 2. pp. 189-195.

15. Dvoryanchikov V.I. Termodinamicheskie svoistva geotermal'nykh flyuidov ispol'zuemykh v teploenergetike [Thermodynamic properties of geothermal fluids used in the heat]. Materialy nauchnogo simpoziuma «Mekhanizmy uchastiya vody v bioelektromagnitnykh effektakh», Moskva, 2013 [Materials Science Symposium "Mechanisms of water bioelectromagnetic effects", Moscow, 2013]. Moscow, 2013. pp. 133-138. (In Russian)

16. Dvoryanchikov V.I., Djavatov D.K. Shihahmedova D.P. Isochoric heat capacity of aqueous solutions of CaCl2. Izvestiya vysshikh uchebnykh zavedenii. Tekhnicheskie nauki [Proceedings of the universities. The North Caucasus region. Technical sciences]. 2015. no. 3. pp. 93-97. (In Russian) DOI: 10.17213/0321-2653-2015-3-93-97


Review

For citations:


Dvoryanchikov V.I., Djavatov D.K., Rabadanov G.A., Iskenderov E.G., Shikhakhmedova D.P. ISOCHORIC HEAT CAPACITY OF 1% AQUEOUS SOLUTION OF MAGNESIUM CHLORIDE. South of Russia: ecology, development. 2016;11(2):121-131. (In Russ.) https://doi.org/10.18470/1992-1098-2016-2-121-131

Views: 773


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1992-1098 (Print)
ISSN 2413-0958 (Online)