Allele pool of the DRB1 OLA gene in sheep of different breeds
https://doi.org/10.18470/1992-1098-2025-4-12
Abstract
The objective was to conduct a comprehensive analysis of the variability of the DRB1 locus OLA, to establish the level of polymorphism in the populations and breeds of sheep studied bred in different environmental conditions.
Material and methods included an assessment of the genetic differentiation of breeds from Russia (Dagestan Mountain, Dorper, Romanov, Suffolk) and one from the Republic of Kazakhstan (Akzhaik). The Romanov sheep populations were from farms in the Yaroslavl region and the Edilbaevskaya x Kalmyk crossbreeds were from Kalmykia (Russia). The decoding of the nucleotide sequence of DNA was carried out in 246 animals. Sequencing was carried out according to Sanger, followed by the use of bioinformatics analysis procedures. Statistical data processing was carried out using Microsoft Excel 2023, GenAlEx programs. The results showed that the between‐population variation (Frt = 0.008, p = 0.005) explained only 0.76 % of the variance, while the differences between the groups (Fsr = 0.044, p = 0.001) were 4.28 %. The negative Fis value (‐0.030, p = 0.997) indicated an excess of heterozygotes. The gene flow assessment (Nm = 4.58) confirmed a moderate level of migration. All the studied populations retained an excess of alleles with high levels of heterozygosity. A statistically significant level of population differentiation was noted (Fst = 5.2 %, p < 0.001).
The DRB1 OLA gene allele pool showed a typical structure with a predominance of individual variability in the sheep populations studied (95 %). Each breed contained alleles not found in others. Populations 3 and 9 were an exception owing to their small sample size (n ≤ 10), which limited the possibility of accurate statistical analysis and reliable identification of unique alleles.
About the Authors
D. A. DevrishovRussian Federation
Davuday A. Devrishov
Moscow
S. N. Marzanova
Russian Federation
Saida N. Marzanova, PhD (Biology), Associate Professor, Department of Immunology and Biotechnology
23 Academika Skryabin St, Moscow, 109472.
Tel. +79268137147
V. A. Zhuchkov
Russian Federation
Vladislav A. Zhuchkov
Moscow
N. S. Marzanov
Russian Federation
Nurbiy S. Marzanov
Moscow
E. A. Nikolaeva
Russian Federation
Elizaveta A. Nikolaeva
Moscow
K. F. Fatakhov
Russian Federation
Kurban F. Fatakhov
Moscow
K. G. Yesengaliev
Kazakhstan
Kairly G. Yesengaliev
Uralsk
A. M. Davletova
Kazakhstan
Ainur M. Davletova
Uralsk
E. S. Nysanov
Kazakhstan
Ersain S. Nysanov
Uralsk
References
1. Davies G., Stear M.J., Benothman M., Abuagob O., Kerr A., Mitchell S., Bishop S.C. Quantitative trait loci associated with parasitic infection in Scottish blackface sheep. Heredity (Edinb), 2006, vol. 96, no. 3, pp. 252–258. https://doi.org/10.1038/sj.hdy.6800788
2. Vasoya D., Oliveira P.S., Muriel L.A., Tzelos T., Vrettou Ch., Morrison W.I., Ferreira de Miranda Santos I.K., Connelley T. High throughput analysis of MHC‐I and MHC‐DR diversity of Brazilian cattle populations. HLA, 2021, vol. 98, no. 2, pp. 93–113. https://doi.org/10.1111/tan.14339
3. Vasoya D., Connelley T., Tzelos T., Todd H., Ballingall K.T. Large scale transcriptional analysis of MHC class I haplotype diversity in sheep. HLA, 2024, vol. 103, no. 2, article id: e15356. https://doi.org/10.1111/tan.15356
4. Marzanova S.N., Fatakhov K.F., Devrishova D.A., Marzanov N.S. Relationship of loci of the major histocompatibility complex in sheep (OLA) with their resistence and susceptibility to parasitoses.Veterinary science, 2024. no. 7. pp. 28‒33. (In Russian) https://doi.org/10.30896/0042‐4846.2024.27.7.28‐33
5. Marzanova S.N., Devrishova D.A., Fatakhov K.F., Marzanov N.S. Status of research on the major histocompatibility complex (OLA) in sheep. Agricultural science, 2025, vol. 390, no. 1, pp. 93–99. (In Russian) https://doi.org/ 10.32634/0869‐8155‐2025‐390‐01‐93‐99
6. Herrmann‐Hoesing L.M., White S.N., Mousel M.R., Lewis G.S., Knowles D.P. Ovine progressive pneumonia provirus levels associate with breed and Ovar‐DRB1. Immunogenetics, 2008, vol. 60, no. 12, pp. 749–758. https://doi.org/10.1186/1297‐9686‐41‐17
7. Gowane G.R., Sharma P., Kumar R., Misra S.S., Alex R., Vohra V., Chhotaray S., Dass G., Chopra A., Kandalkar Y., Vijay V., Choudhary A., Magotra A., Rajendran R. Cross‐population genetic analysis revealed genetic variation and selection in the Ovar‐DRB1 gene of Indian sheep breeds. Animal Biotechnology, 2023, vol. 34, no.7, pp. 2928–2939. https://doi.org/10.1080/10495398.2022.2125404
8. Gowane G.R., Sharma P., Kumar R., Misra S. S., Alex R., Vohra V., Chhotaray S, Sharma N., Chopra A., Kandalkar Y., Choudhary A., Magotra A. Population‐wide genetic analysis of OvarDQA1 and DQA2 loci across sheep breeds in India revealed their evolutionary importance and fitness of sheep in a tropical climate. Animal Biotechnology, 2023, vol. 34, no. 9, pp. 4645–4657. https://doi.org/10.1080/10495398.2023.2180010
9. Salim B., Nakao R., Chatanga E., Marcuzzi O., Ahmed Eissawi M., Almathen F., Hanotte O., Giovambattista G. Exploring genetic diversity and variation of Ovar‐DRB1 gene in Sudan Desert sheep using targeted next‐generation sequencing. BMC Genomics, 2024, vol. 25, no. 1, pp. 2–15. https://doi.org/10.1186/s12864‐024‐10053‐39
10. Mahdy E.A., Mäkinen A., Chowdhary B.P., Andersson L., Gustavsson I. Chromosomal localization of the ovine major histocompatibility complex (OLA) by in situ hybridization. Hereditas, 1989, vol. 111, no. 1, pp. 87–90. https://doi.org/10.1111/j.1601‐5223.1989.tb00381.x
11. Ballingall K.T., Fardoe K., McKeever D.J. Genomic organisation and allelic diversity within coding and non‐coding regions of the Ovar‐DRB1 locus. Immunogenetics, 2008, vol. 60, no. 2, pp. 95–103.
12. Bay V., Keleş M., Aymaz R., Hatipoğlu E., Öner Y.,Yaman Y. Documentation of extensive genetic diversity in the Ovar‐DRB1 gene in native Turkish sheep. Animal Biotechnology, 2021, vol. 32, no. 4, pp. 507–518.
13. Buzan E., Pokorny B., Urzi F., Duniš L., Bončina A., Iacolina L., Šprem N., Stipoljev S., Mereu P., Leoni G., Pirastru M., Safner T. Genetic variation of European mouflon depends on admixture of introduced individuals. Mammal Research, 2023, no. 69, pp. 145–158. https://doi.org/10.1007/s13364‐023‐00726‐x
14. Ballingall K.T., Tassi R. Sequence‐based genotyping of the sheep MHC class II DRB1 locus. Immunogenetics, 2010, vol. 62, no. 1, pp. 31–39.
15. Polat M., Aida Y., Takeshima S.N., Aniwashi J., Halik M. The diversity of major histocompatibility complex class II DRB1 gene in sheep breeds from Xinjiang, China. Tissue Antigens, 2015, vol. 85. no. 1, pp. 50–57. https://doi.org/10.1111/tan.12480
16. Yaman Y., Bay V., Aymaz R., Keleş M., Öner Y., Teferedegn E.Y., Ün C. A novel 2 bp deletion variant in Ovine‐DRB1 gene is associated with increased Visna/maedi susceptibility in Turkish sheep. Scientific Reports, 2021, vol. 11, article id: 14435, pp. 1–11. https://doi.org/10.1038/s41598‐021‐93864‐8
17. Huang W., Dicks K.L., Hadfield J.D., Johnston S.E., Ballingall K.T., Pemberton J.M. Contemporary selection on MHC genes in a freeliving ruminant population. Ecology Letters, 2022, vol. 25, no. 4, pp. 828–838. https://doi.org/10.1111/ele.13957
18. Stear M., Preston S., Piedrafita D., Donskow‐Łysoniewska K. The Immune Response to Nematode Infection. International Journal of Molecular Sciences, 2023, vol. 24, article id: 2283, pp. 1–18. https://doi.org/10.3390/ijms24032283
19. Omarova F.A., Drokov M.Yu., Khamaganova E.G. Major histocompatibility complex: history of discovery, evolution, structure, significance for transplantation of allogenetic hematopoietic stem cells. Transplantologiya. The Russian Journal of Transplantation, 2023, vol. 15, no. 2, pp. 251–265. (In Russian) https://doi.org/10.23873/2074‐0506‐2023‐15‐2‐251‐265
20. Shen H., Han G., Jia B., Jiang S., Du Y. MHC‐DRB1/DQB1 Gene Polymorphism and Its Association with Resistance/Susceptibility to Cystic Echinococcosis in Chinese Merino Sheep. Journal Parasitology Research, 2014, article id: 272601, pp. 1–7. https://dx.doi.org/10.1155/2014/272601
21. Esmailnejad A., Ganjiani V., Hosseini‐Nasab E., Nazifi S. Association of Ovar‐DRB1 alleles with innate immune responses in sheep. Vetrinary Medicine and Science, 2022, vol. 8, no. 2, pp. 752–757. https://doi.org/10.1002/vms3.683
22. Marzanova S.N., Devrishova D.A., Zuchkova V.A., Nikolaeva E.A., Marzanov N.S. Comparison of DRB1 Gene Alleles in Two Populations of Romanov Sheep Breed by Restriction Mapping and Sequencing. Biotechnology, 2025, vol. 41, no. 1, pp. 21–33. (In Russian) DOI: 10.56304/S0234275825010090
23. Maccari G., Robinson J., Barker D.J., Yates A.D., Hammond J.A., Marsh S.G.E. The 2024 IPD‐MHC database update: a comprehensive resource for major histocompatibility complex studies. Nucleic Acids Research, 2025, vol. 53, no. D1, pp. D457–D461. https://doi.org/10.1093/nar/gkae932
24. Peakall R., Smouse P.E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research‐‐an update. Bioinformatics, 2012, vol. 28, no. 19, pp. 2537–2539. https://doi.org/10.1093/bioinformatics/bts460
25. Cinar M.U., Mousel M.R., Herrmann‐Hoesing L.M., Taylor J.B., White S.N. Ovar‐DRB1 haplotypes *2001 and *0301 are associated with sheep growth and ewe lifetime prolificacy. Gene, 2016, vol. 595, no. 2, pp. 187–192. https://doi.org/10.1016/j.gene.2016.10.004
26. Hassan M., Good B., Hanrahan J. P., Campion D., Sayers G., Mulcahy G., Sweeney T. Sweeney. The dynamic influence of the DRB1*1101 allele on the resistance of sheep to experimental Teladorsagia circumcincta infection. Veterinary Research, 2011, vol.42,
Review
For citations:
Devrishov D.A., Marzanova S.N., Zhuchkov V.A., Marzanov N.S., Nikolaeva E.A., Fatakhov K.F., Yesengaliev K.G., Davletova A.M., Nysanov E.S. Allele pool of the DRB1 OLA gene in sheep of different breeds. South of Russia: ecology, development. 2025;20(4):129‐137. (In Russ.) https://doi.org/10.18470/1992-1098-2025-4-12
JATS XML





































