Highly hydroxylated fullerenols С60(OH) 36 as potential environmental pollutants: Evaluation of antioxidant activity in liver
https://doi.org/10.18470/1992-1098-2025-3-9
Abstract
The aim of this work was to study the antioxidant properties of fullerenol C60(OH)36 in various in vitro model systems, as well as to evaluate the protective effectiveness of fullerenol against proteins and lipids of liver homogenates.
The experiments were carried out on liver homogenates of white
laboratory rats. At the initial stage, the antioxidant activity of fullerenol in various concentrations (from 1×10‐5 to 0.2 mg/ml) was evaluated. Since the fullerenol concentration of 0.001 mg/ml showed a sufficiently high antioxidant activity in the epinephrine autoxidation system, we used it to study the antioxidant activity in other model systems in which artificial induction of oxidative stress was performed.
Subsequently, control values were obtained in each model system, relative to which the effectiveness of fullerenol as an antioxidant was judged. The protective efficacy of fullerenol against liver homogenate proteins and lipids was evaluated. The effect of fullerenol on the activity of the superoxide dismutase enzyme was also studied. Using the model system, it was shown that fullerenol prevents oxidative damage to lipids.
A study of the intensity of oxidative modification of proteins in the Fe+2/H2O2 model system (Fenton's medium) showed that fullerenol effectively reduced the increase in carbonyl groups. C60(OH)36 at a concentration of 0.001 mg/ml reduced the rate of ROS generation in rat liver mitochondria, which resulted in a decrease in the fluorescence intensity of the ROS‐sensitive (reactive oxygen species) the probe.
About the Authors
A. I. IsrapilovaRussian Federation
Ashura I. Israpilova, postgraduate student
Makhachkala
Competing Interests:
The authors declare no conflict of interest.
A. A. Adieva
Russian Federation
Aina A. Adieva
Makhachkala
Competing Interests:
The authors declare no conflict of interest.
A. M. Dzhafarova
Russian Federation
Albina M. Dzhafarova
Makhachkala
Competing Interests:
The authors declare no conflict of interest.
N. O. Guseynova
Russian Federation
Nadira O. Guseynova
Makhachkala
Competing Interests:
The authors declare no conflict of interest.
Zh. B. Lyutova
Russian Federation
Zhanna B. Lyutova
St. Petersburg; Gatchina
Competing Interests:
The authors declare no conflict of interest.
A. A. Borisenkova
Russian Federation
Alina A. Borisenkova
St. Petersburg; Gatchina
Competing Interests:
The authors declare no conflict of interest.
R. H. Yahyaev
Russian Federation
Ramazan H. Yahyaev
Makhachkala
Competing Interests:
The authors declare no conflict of interest.
V. R. Abdullaev
Russian Federation
Vagab R. Abdullaev
Makhachkala; Kizlyar
Competing Interests:
The authors declare no conflict of interest.
References
1. Sanchís J., Berrojalbiz N., Caballero G., Dachs J., Farré M., Barceló D. Occurrence of aerosol-bound fullerenes in the Mediterranean Sea atmos-phere. Environmental science & technology, 2012, vol. 46, no. 3, pp. 1335–1343.
2. Navarro D.A., Kookana R.S., Kirby J.K., Martin S.M., Shareef A., Du J., McLaughlin M.J. Behavior of fullerenes (C60) in the terrestrial environ- ment: potential release from biosolids-amended soils. Journal of hazardous materials, 2013, vol. 262, pp. 496–503.
3. Navarro D.A., Kookana R.S., McLaughlin M.J., Kirby J.K. Fullerol as a potential pathway for mineralization of fullerene nanoparticles in biosolid-amended soils. Environmental Science & Technology Letters, 2016, vol. 3, no. 1, pp. 7–12.
4. Yu Y., Liu S., Yang L., Song P., Liu Z., Liu X., Yan X., Dong Q. Roles of reactive oxygen species in inflammation and cancer. MedComm, 2024, vol. 5, no. 4, article ID: e519. DOI: 10.1002/mco2.519
5. Bardaweel S.K., Gul M., Alzweiri M., Ishaqat A., ALSalamat H.A., Ba- shatwah R.M. Reactive Oxygen Species: the Dual Role in Physiological and Pathological Conditions of the Human Body. Eurasian J Med, 2018, vol. 50, no. 3, pp. 193–201. https://doi.org/10.5152/eurasianjmed.2018.17397
6. Zhao Y., Shen X., Ma R., Hou Y., Qian Y., Fan C. Biological and bio- compatible characteristics of fullerenol nanomaterials for tissue engineering. Histol. Histopathol, 2021, vol. 18316, pp. 456–477. https://doi.org/10.14670/HH-18-316
7. Xu P.Y., Li, X.Q., Chen W.G., Deng L.L., Tan Y.Z., Zhang Q., Xie S.Y., Zheng L.S. Progress in Antiviral Fullerene Research. Nanomaterials, 2022, vol. 12, pp. 67–73.
8. Bolshakova O.I., Borisenkova A.A., Golomidov I.M., Komissarov A.E., Slobodina A.D., Ryabova E.V., Ryabokon I.S., Latypova E.M., Slepneva E.E., Sarantseva S.V. Fullerenols Prevent Neuron Death and Reduce Oxidative Stress in Drosophila Huntington's Disease Model. Cells, 2023, vol. 12, pp. 56–63. https://doi.org/10.3390/cells12010170
9. Tang J., Chen Z., Sun B., Dong J., Liu J., Zhou H., Wang L., Bai R., Miao Q., Zhao Y., et al. Polyhydroxylated Fullerenols Regulate Macrophage for Cancer Adoptive Immunotherapy and Greatly Inhibit the Tumor Metastasis. Nanomedicine, 2016, vol.12, iss. 4, pp. 945–954. https://doi.org/10.1016/j.nano.2015.11.021
10. Caldeira D. de A.F., Mesquita F.M., Pinheiro F.G., Oliveira D.F., Oliveira L.F.S., Nascimento J.H.M., Takiya C.M., Maciel L., Zin W.A., Acute Exposure to C60 Fullerene Damages Pulmonary Mitochondrial Function and Mechanics. Nanotoxicology, 2021, vol. 15, iss. 3, pp. 352– 365. https://doi.org/10.1080/17435390.2020.1863498
11. Saitoh Y., Miyanishi A., Mizuno H., Kato S., Aoshima H., Kokubo K., Miwa N. Super-Highly Hydroxylated Fullerene Derivative Protects Human Keratinocytes from UV-Induced Cell Injuries Together with the Decreases in Intracellular ROS Generation and DNA Damages. J Photochem Photobiol, 2011, vol.102, iss. 1, pp. 69–76. https://doi.org/10.1016/j.jphotobiol.2010.09.006
12. Chen X., Yang J., Li M., Zhu S., Zhao M., Yang C., Liu B., Gao H., Lu A., Ge L., et al. Fullerenol Protects Cornea from Ultraviolet B Expo-sure. Redox Biol, 2022, vol. 54, article ID: 102360. https://doi.org/doi:10.1016/j.redox.2022.102360
13. Bogdanovic V., Stankov K., Nikolic A., Icevic I., Solajic S., Bogdanovic G., Djordjevic A. The Influence of Fullerenol on Antioxidative En-zyme Activity in Irradiated Human Erythroleukemic Cell Line (K562). Hem Ind., 2007, vol. 61, iss. 3, pp. 164–166. https://doi.org/10.2298/hemind0703164b
14. Wang C., Zhao M., Xie J., Ji C., Leng Z., Gu Z. Fullerenol nano- Montmorillonite Nanocomposite as an Efficient Radioprotective Agent for Ameliorating Radioactive Duodenal Injury. Chemical Engineering Journal, 2022, vol. 427, article ID: 131725. https://doi.org/10.1016/j.cej.2021.131725
15. Grebowski J., Kazmierska-Grebowska P., Cichon N., Piotrowski P., Litwinienko G. The Effect of Fullerenol C60(OH)36 on the Antioxidant Defense System in Erythrocytes. Int. J. Mol. Sci., 2021, vol. 23 no.119, iss. 1. https://doi.org/10.3390/ijms23010119
16. Grebowski J., Konopko A., Krokosz A., DiLabio G.A., Litwinienko G. Antioxidant Activity of Highly Hydroxylated Fullerene C60 and Its Interactions with the Analogue of α-Tocopherol. Free Radic Biol Med, 2020, vol. 160, pp. 734–744. https://doi.org/10.1016/j.freeradbiomed.2020.08.017
17. Kovel E.S., Sachkova A.S., Vnukova N.G., Churilov G.N., Knyazeva E.M., Kudryasheva N.S. Antioxidant Activity and Toxicity of Fullerenols via Bioluminescence Signaling: Role of Oxygen Substituents. Int J Mol Sci. 2019, vol. 20, iss. 9, article ID: 2324. https://doi.org/10.3390/ijms20092324
18. Kovel E.S., Kicheeva A.G., Vnukova N.G., Churilov G.N., Stepin E.A., Kudryasheva N.S. Toxicity and Antioxidant Activity of Fullerenol C60.70 with Low Number of Oxygen Substituents. Int J Mol Sci,. 2021, vol. 22, iss. 12, article ID: 6382. https://doi.org/10.3390/ijms22126382
19. Markelić M., Drača D., Krajnović T., Jović Z., Vuksanović M., Koruga D., Mijatović S., Maksimović-Ivanić, D. Combined Action of Hy-per- Harmonized Hydroxylated Fullerene Water Complex and Hyperpolar- ized Light Leads to Melanoma Cell Reprogramming In Vitro. Nanomaterials, 2022, vol. 12, iss. 8. https://doi.org/10.3390/nano12081331
20. Sergeeva V., Kraevaya O.A., Ershova E., Kameneva L., Malinovskaya E., Dolgikh O., Konkova M., Voronov I., Zhilenkov A., Veiko N., et al. Antioxidant properties of fullerene derivatives depend on their chemical structure: A study of two fullerene derivatives on HELFs. Oxid. Med. Cell. Longev, 2019, iss. 1, article ID: 4398695. https://doi.org/10.1155/2019/4398695
21. Kukaliya O.N., Meshcheryakov A.A., Yuryev G.O., Andoskin P.A., Semenov K.N., Molchanov O.E., Maistrenko D.N., Murin I.V., Sharoiko V.V. Prospects for the use of water-soluble derivatives of light fullerenes in medicine. Translational medicine, 2023, vol. 10, no. 6, pp. 507–521. (In Russian) https://doi.org/10.18705/2311-4495-2023-10-6-507-521
22. Borisenkova A.A., Eropkin M.Y., Konovalova N.I., Titova A.V., Markova M.A., Lyutova Z.B., Mazur A.S., Sedov V.P., Orlova V.A., Lykholay A.N., Orlova D.N., Arutyunyan A.V. Fullerenol C60 (OH) 36: Antioxidant, Cytoprotective, Anti-Influenza Virus Activity, and Self- Assembly in Aqueous Solutions and Cell Culture Media. Antioxidants, 2024, vol. 13, no. 12, pp. 1525–1530.
23. Djafarzadeh S., Jakob S.M. Isolation of Intact Mitochondria from Skeletal Muscle by Differential Centrifugation for High-resolution Respi- rometry Measurements. J Vis Exp., 2017, vol. 8, no. 121, article ID: e55251. https://doi.org/10.3791/55251
24. Mustafakulov M.A., Nabiev A.Kh., Abdulladzhanova N.G., Matchanov A.D., Tukhtaeva S. Study of antioxidant and antiradical activity of isatis tinctoria l leaves. Universum: chemistry and biology, 2022, vol. 15, no. 7, pp. 40–44. (In Russian)
25. Lysakova T.I. The influence of ischemic injury factors on lipid peroxidation in rat brain synaptosomes. Biophysics, 1997, vol. 42, no. 2, pp. 408–411. (In Russian)
26. Sirota T.V. Use of nitroblue tetrazolium in the reaction of adrenaline autoxidation to determine the activity of superoxide dismutase. Biomedical Chemistry, 2013, vol. 59, no. 4, pp. 399–410. (In Russian)
27. Torres-Cuevas I., Parra-Llorca A., Sánchez-Illana A., Nuñez-Ramiro A. Oxygen and oxidative stress in the perinatal period. Redox Biology, 2017, vol. 12, pp. 674–681.
28. Halliwell B., Gutteridge J.M.C. Free Radicals in Biology and Medicine. 4th Edition, Oxford University Press, Oxford, 2006, vol. 14.
29. Imai H., Nakagawa Y., Biological significance of phospholipids hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells Free Radical Biology and Medicine, 2003, vol. 34, pp. 145–169.
30. Dubinina E.E. Produkty kislorodnogo obmena v funktsional'noi aktivnosti kletok: (zhizn' i smert', sozidanie i razrushenie). Fiziologicheskie i kliniko-biokhimicheskie aspekty [Oxygen metabolism products in the functional activity of cells: (life and death, creation and destruction). Physiological and clinical-biochemical aspects]. St. Petersburg, Medical Press, 2006, vol. 397, pp. 95–102. (In Russian)
31. Kalyanaraman B., Darley-Usmar V., Davies K.J., Dennery P.A., Forman H.J., Gri-sham M.B., Mann G.E., Moore K., Roberts L.J., Ischiropoulos H. Measuring reactive oxygen and nitrogen species with fluores-cent probes: challenges and limitations. Free Radic Biol Med, 2012, vol. 52, no. 1, pp. 1–6. https://doi.org/10.1016/j.freeradbiomed.2011.09.030
32. Fileti E.E., Rivelino R., Mota F.D., Malaspina T. Effects of hydrox-yl group distribution on the reactivity, stability and optical properties of fullerenols. Nanotechnology, 2008, vol. 19, pp. 509–801.
Review
For citations:
Israpilova A.I., Adieva A.A., Dzhafarova A.M., Guseynova N.O., Lyutova Zh.B., Borisenkova A.A., Yahyaev R.H., Abdullaev V.R. Highly hydroxylated fullerenols С60(OH) 36 as potential environmental pollutants: Evaluation of antioxidant activity in liver. South of Russia: ecology, development. 2025;20(3):103-114. (In Russ.) https://doi.org/10.18470/1992-1098-2025-3-9





































