Preview

South of Russia: ecology, development

Advanced search

Inactivating and inhibitory activity of dry ethanol extracts of wormwood (Artemisia spp.) on herpes simplex virus of the 2 type in vitro

https://doi.org/10.18470/1992-1098-2025-2-2

Abstract

Aim. In vitro assessment of the inactivating and inhibitory activity of dry ethanol extracts of various wormwood species (Artemisia spp.) native to the Novosibirsk region and Altai Republic on the replication of Herpes simplex virus type 2 (HSV-2).

Vegetable raw materials were collected and dry ethanol extracts of various types of wormwood were prepared. The laboratory strain MS HSV-2 was used. The inactivating and inhibitory activity of the extracts was analysed on Vero E6 cell culture according to generally accepted methods. The comparison sample is the lyophilized drug acyclovir (FARMLAND, Republic of Belarus). The content of biologically active substances (BAS) in the extracts was carried out by mass spectrometry.

The inactivating and inhibitory activity of dry ethanol extracts of     Artemisia spp. dissolved in DMSO was revealed in the range of 50 % effective concentrations (EC50) from 2.46±0.63 μg/ml to            218.75±40.09 μg/ml in the reactions of direct inactivation (neutralization) of the virus and from 13.67±2.50 to 218.75±40.09 μg/ml according to the schemes of "prevention" of infection and "treatment" of infected cells, respectively. The percentage of flavonoids in terms of rutin, polyphenolic compounds in terms of catechin and oxycoric acids in terms of chlorogenic acid was determined by spectrophotometry in extracts.

Based on the results obtained it can be concluded that ethanol extracts of Artemisia spp. dissolved in DMSO contain BAS (these are flavonoids, polyphenolic compounds and oxycoric acids) that promote the inactivation of free virions and effectively act on HSV-2 replication inside infected cells in vitro.

About the Authors

E. I. Каzachinskaia
Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences; Vector State Research Centre of Virology and Biotechnology, Federal Service for Surveillance in the Sphere, Consumers Rights Protection and Human Welfare
Russian Federation

Еlena I. Каzachinskaia, Doctor of Biology,,Leading Researcher, Research Institute of Virology, FRCFTM, Siberian Branch, Russian Academy of Sciences;

32‐1 Koltsovo, Novosibirsk, Novosibirskiy region, Russia 630559. 
Tel. +79095307441



V. V. Velichko
Novosibirsk State Medical University
Russian Federation

Victoriya V. Velichko

Novosibirsk



V. D. Romanova
Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
Russian Federation

Valeriya D. Romanova

Novosibirsk



D. S. Kruglov
Novosibirsk State Medical University
Russian Federation

Dmitriy S. Kruglov

Novosibirsk



D. L. Prokusheva
Novosibirsk State Medical University
Russian Federation

Dar’ya L. Prokusheva

Novosibirsk



A. A. Chepurnov
Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
Russian Federation

Аlexander А. Chepurnov

Novosibirsk


Competing Interests:

Новосибирский государственный медицинский университет



Yu. V. Коnonova
Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
Russian Federation

Yulia V. Коnonova

Novosibirsk



L. Fu
Institute of Microbiology, Chinese Academy of Sciences
China

Lifeng Fu

CAS Key Laboratory of Pathogen Microbiology and Immunology

Beijing

 



Sh. Shao
National Institute for Radiological Protection
China

Shuai Shao

Beijing



M. A. Gulyaeva
Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
Russian Federation

Marina A. Gulyaeva

Novosibirsk



A. M. Shestopalov
Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
Russian Federation

Аlexander М. Shestopalov

Novosibirsk



References

1. McQuillan G., Kruszon-Moran D., Flagg E.W., Paulose-Ram R. Prevalence of Herpes Simplex Virus Type 1 and Type 2 in Persons Aged 14–49: United States, 2015–2016. National Center for Health Statistics; Hyattsville, MD, USA: 2018. P. 1–8. CHS Data Brief. PMID: 29442994

2. Burrel S., Boutolleau D., Ryu D., Agut H., Merkel K., Leendertz F.H., Calvignac-Spencer S. Ancient Recombination Events between Human Herpes Simplex Viruses. Mol Biol Evol., 2017, vol. 34, no. 7, pp. 1713–1721. DOI: 10.1093/molbev/msx113

3. Koelle D.M., Norberg P., Fitzgibbon M.P. Russell R.M., Greninger A.L., Huang M.-L., Stensland L., Jing L., Magaret A.S., Diem K., Selke S., Xie H., Celum C. et al. Worldwide circulation of HSV-2 × HSV-1 recombinant strains. Sci Rep., 2017, no. 7, article id: 44084. DOI: 10.1038/srep44084

4. Crawford K.H.D., Selke S., Pepper G., Goecker E., Sobel A., Wald A., Johnston C., Greninger A.L. Performance characteristics of highly automated HSV-1 and HSV-2 IgG testing. J Clin Microbiol., 2024, vol. 62, no. 6, article number: e0026324. DOI: 10.1128/jcm.00263-24

5. Casto A.M., Roychoudhury P., Xie H., Selke S., Perchetti G.A, Wofford H., Huang M.-L., Verjans G.M.G.M., Gottlieb G.S., Wald A. et al. Large, Stable, Contemporary Interspecies Recombination Events in Circulating Human Herpes Simplex Viruses. J Infect Dis., 2020, vol. 221, no. 8, pp. 1271–1279. DOI: 10.1093/infdis/jiz199

6. Andrei G., Snoeck R. Herpes Simplex Virus Drug-Resistance: New Mutations and Insights. Current Opinion in Infectious Diseases, 2013, vol. 26, no. 6, pp. 551–560. DOI: 0000000000000015

7. Sallee L., Boutolleau D. Management of Refractory/Resistant Herpes Simplex Virus Infections in Haematopoietic Stem Cell Transplantation Recipients: A Literature Review. Rev Med Virol., 2024, vol. 34, no. 5, article number: e2574. DOI: 10.1002/rmv.2574

8. Fatahzadeh M., Schwartz R. A. Human Herpes Simplex Virus Infections: Epidemiology, Pathogenesis, Symptomatology, Diagnosis, and Management. Journal of the American Academy of Dermatology, 2007, vol. 57, no. 5, pp. 737–763. DOI: 10.1016/j.jaad.2007.06.027

9. Brady R.C., Bernstein D.I. Treatment of herpes simplex virus infections. Antiviral Res., 2004, no. 61, pp. 73–81. DOI: 10.1016/j.antiviral.2003.09.006

10. Megli C.J., Coyne C.B. Infections at the maternal-fetal interface: an overview of pathogenesis and defence. Nat Rev Microbiol., 2022, vol. 20, no. 2, pp. 67–82. DOI: 10.1038/s41579-021-00610-y

11. Smith A.E., McKenney A., Rabinowitz L., Das A. Case Rep Diagnosis of neonatal herpes simplex infection from the placenta. Pediatr, 2020, no. 2020, article id: 8898612. DOI: 10.1155/2020/8898612

12. The WHO website. Online resource. Available at: https://www.who.int/ru/news-room/fact-sheets/detail/herpes-simplex-virus (accessed 15.10.2024)

13. Groves M.J. Genital Herpes: A Review. Am Fam Physician., 2016, vol. 93, no. 11, pp. 928–34.

14. Mathew J.Jr., Sapra A. Herpes Simplex Type 2. Book. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan. NBK554427.

15. Awasthi S., Friedman H.M. An mRNA vaccine to prevent genital herpes. Transl Res., 2022, no. 242, pp. 56–65. DOI: 10.1016/j.trsl.2021.12.006

16. Wald A. Genital HSV-1 infections. Sex Transm Infect., 2006, vol. 82, no. 3, pp. 189–90. DOI: 10.1136/sti.2006.019935

17. Zheng T., Jiang L., Li G., Zeng N., Yu B., Duan S., Wang G., Liu Z. Association between human herpes simplex virus and severe headache or migraine among aged 20-49 years: a cross-sectional study. Front Neurol., 2024, no. 15, article id: 1476863. DOI: 10.3389/fneur.2024.1476863

18. Okoye J.O., Ngokere A.A., Erinle C., Mbamalu C. Co-existence of Herpes simplex virus type 2 and two other oncoviruses is associated with cervical lesions in women living with HIV in South-Western Nigeria. Afr Health Sci., 2020, vol. 20, no. 3, pp. 1015–1023. DOI: 10.4314/ahs.v20i3.4

19. Looker K.J., Elmes J.A.R., Gottlieb S.L., Schiffer J.T., Vickerman P., Turner K.M.E., Boily M.-C. Effect of HSV-2 infection on subsequent HIV acquisition: an updated systematic review and meta-analysis. Lancet Infect Dis., 2017, vol. 17, no. 12, pp. 1303–1316. DOI: 10.1016/S1473-3099(17)30405-X

20. McClymont E., Tan D.H., Bondy S., Albert A., Coutlée F., Lee M., Walmsley S., Ogilvie G., Money D. HSV-2 infection and HPV incidence, persistence, and precancerous lesions in a cohort of HPV-vaccinated women living with HIV. Int J STD AIDS, 2023, vol. 34, no. 6, pp. 402–407. DOI: 10.1177/09564624231154298

21. Navarro-Bielsa A., Gracia-Cazaña T., Aldea-Manrique B., Abadías-Granado I., Ballano A., Bernad I., Gilaberte Y. COVID-19 infection and vaccines: potential triggers of Herpesviridae reactivation. An Bras Dermatol., 2023, vol. 98, no. 3, pp. 347–354. DOI: 10.1016/j.abd.2022.09.004

22. Bai L., Xu J., Zeng L. Zhou F. A review of HSV pathogenesis, vaccine development, and advanced applications. Mol Biomed. 2024, vol. 5, no. 1, article number: 35. DOI: 10.1186/s43556-024-00199-7

23. Rathbun M.M., Szpara M.L. A holistic perspective on herpes simplex virus (HSV) ecology and evolution. Advances in Virus Research, 2021, vol. 110, no. 110, pp. 27–57. DOI: 10.1016/bs.aivir.2021.05.001

24. Desai D., Londhe R., Chandane M., Kulkarni S. Altered HIV-1 Viral Copy Number and Gene Expression Profiles of Peripheral (CEM CCR5+) and Mucosal (A3R5.7) T Cell Lines Co-Infected with HSV-2 In Vitro. Viruses, 2022, vol. 4, no. 8, article id: 1715. DOI: 10.3390/v14081715

25. Taylor M., Gerriets V. Acyclovir. Book In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2023. PMID: 31194337. Bookshelf ID: NBK542180.

26. Bautista L., Sirimanotham C., Espinoza J., Cheng D., Tay S., Drayman N. A drug repurposing screen identifies decitabine as an HSV-1 antiviral. Microbiol. Spectr., 2024, no. 12, article number: e0175424. DOI: 10.1128/spectrum.01754-24

27. Stamos J.D., Lee L.H., Taylor C., Elias T., Adams S.D. In Vitro and In Silico Analysis of the Inhibitory Activity of EGCG-Stearate against Herpes Simplex Virus-2. Microorganisms, 2022, vol. 10, no. 7, article id: 1462. DOI: 10.3390/microorganisms10071462

28. Todorova N., Rangelov M., Dincheva I., Badjakov I., Enchev V., Markova N. Potential of Hydroxybenzoic Acids from Graptopetalum Paraguayense for Inhibiting of Herpes Simplex Virus DNA Polymerase–Metabolome Profiling, Molecular Docking and Quantum-Chemical Analysis. Pharmacia, 2022, no. 69, pp. 113–123. DOI: 10.3897/pharmacia.69.e79467

29. Di Sotto A., Di Giacomo S., Amatore D., Locatelli M., Vitalone A., Toniolo C., Rotino G.L., Scalzo R.L., Palamara A.T., Marcocci M.E., et al. A Polyphenol Rich Extract from Solanum Melongena L. DR2 Peel Exhibits Antioxidant Properties and Anti-Herpes Simplex Virus Type 1 Activity In Vitro. Molecules, 2018, no. 23, article number: E2066. DOI: 10.3390/molecules23082066

30. Treml J., Gazdová M., Šmejkal K., Šudomová M., Kubatka P., Hassan S.T.S. Natural Products-Derived Chemicals: Breaking Barriers to Novel Anti-HSV Drug Development. Viruses, 2020, vol. 12, no. 2, article id: 154. DOI: 10.3390/v12020154

31. Mohan S., Taha M.M.E., Makeen H.A., Alhazmi H.A., Bratty M.A., Sultana S., Ahsan W., Najmi A., Khalid A. Bioactive Natural Antivirals: An Updated Review of the Available Plants and Isolated Molecules. Molecules, 2020, vol. 25, no. 21, article id: 4878. DOI: 10.3390/molecules25214878

32. Sharifi-Rad J., Herrera-Bravo J., Semwal P., Painuli S., Badoni H., Ezzat S.M., Farid M.M., Merghany R.M., Aborehab N.M., Salem M.A. et al. Artemisia spp.: An Update on Its Chemical Composition, Pharmacological and Toxicological Profiles. Oxid Med Cell Longev., 2022, vol. 2022, article id: 5628601. DOI: 10.1155/2022/5628601

33. Hussain A. A phylogenetic perspective of antiviral species of the genus Artemisia (Asteraceae-Anthemideae): A proposal of anti SARS-CoV-2 (COVID-19) candidate taxa. J Herb Med., 2022, no. 36, article id: 100601. DOI: 10.1016/j.hermed.2022.100601

34. Saddi M., Sanna A., Cottiglia F., Chisu L., Casu L., Bonsignore L., De Logu A. Antiherpevirus activity of Artemisia arborescens essential oil and inhibition of lateral diffusion in Vero cells. Ann. Clin. Microbiol. Antimicrob., 2007, no. 6, article number: 10. DOI: 10.1186/1476-0711-6-10

35. Angelova P., Hinkov A., Tsvetkov V., Todorov D., Shishkova K., Dragolova D., Shishkov S., Kapchina-Toteva V. Antiherpes virus activity of extracts from Artemisia chamaemelifolia Vill. Acad. Bulg. Sci., 2019, vol. 72, no. 11, pp. 1475–1483. DOI: 10.7546/CRABS.2019.11.04

36. Liu P., Zhong L., Xiao J., Hu Y., Liu T., Ren Z., Wang Y., Zheng K. Ethanol extract from Artemisia argyi leaves inhibits HSV-1 infection by destroying the viral envelope. Virol J., 2023, vol. 20, no. 1, article number: 8. DOI: 10.1186/s12985-023-01969-5

37. Krasnoborov I.M. Polyn' – Artemisia L. [Wormwood – Artemisia L.]. In: Opredelitel' rastenii Novosibirskoi oblasti [Plant determinant of the Novosibirsk region]. Novosibirsk, Nauka Publ., 2000, pp. 335–339. (In Russian)

38. Каzachinskaia Е.I., Romanova V.D., Ivanоva A.V., Chepurnov А.А., Murtazalieva Z.A., Коnonova Yu.V., Shaulo D.N., Romanyuk V.V., Shestopalov А.М. Inhibitory activity of dry ethanol extracts of Artemisia spp. on SARS‐CoV‐2 replication in vitro. South of Russia: ecology, development, 2022, vol. 17, no. 4, pp. 111–129. (In Russian) https://doi.org/10.18470/1992-1098-2022-4-111-129

39. Hassan S.T.S., Berchova-Bimova K., Šudomova M., Malanik M., Smejkal K., Rengasamy K.R.R. In Vitro Study of Multi-Therapeutic Properties of Thymus bovei Benth. Essential Oil and Its Main Component for Promoting Their Use in Clinical Practice. J. Clin. Med., 2018, no. 7, article id: 283. DOI: 10.3390/jcm7090283

40. Benzekri R., Limam F., Bouslama L. Combination effect of three anti-HSV-2 active plant extracts exhibiting different modes of action. Adv. Tradit. Med., 2020, no. 20, pp. 223–231. DOI: 10.1007/s13596-020-00430-0

41. Каzachinskaia E.I., Chepurnov A.A., Shelemba A.A., Guseinova S.A., Magomedov M.G., Коnonova Yu.V., Romanyuk V.V., Shestopalov A.M. Inhibitory activity of aqueous extracts of tea compositions, individual ingredients for their preparation and some plants against replication of Herpes simplex virus type 2 in vitro. South of Russia: ecology, development, 2022, vol. 17, no. 3, pp. 135–152. (In Russian) DOI: 10.18470/1992-1098-2022-3-135-152

42. Fisenko V.P. Rukovodstvo po eksperimental'nomu (doklinicheskomu) izucheniyu novykh farmakologicheskikh veshchestv [Guidelines for the experimental (preclinical) study of new pharmacological substances]. Moscow, Remedium Publ., 2000, 398 p. (In Russian)

43. Velichko V.V., Kruglov D.S. Spectrophotometric determination of A-vitamin activity of carotenoid-containing raw materials. Journal of Siberian Medical Sciences, 2021, no. 4, pp. 17–26. (In Russian). DOI: 10.31549/2542-1174-2021-4-17-26

44. Kurdyukov Е.Е., Vodop'yanova O.A., Antropova N.V., Mitishev A.V., Evgrashkina N.E. The method of quantitative determination of the amount of tannins in the fruits of Euterpe oleracea. Khimiya Ras-titel'nogo Syr'ya, 2021, no. 4, pp. 225–229. (In Russian). DOI: 10.14258/jcprm.2021049158

45. Liu H., Ye F., Sun Q., Liang H., Li C., Li S., Lu R., Huang B., Tan W., Lai L. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro CoV-2. J Enzyme Inhib Med Chem., 2021, vol. 36, no. 1, pp. 497–503. DOI: 10.1080/14756366.2021.1873977

46. Zannella C., Giugliano R., Chianese A., Buonocore C., Vitale G.A., Sanna G., Sarno F., Manzin A., Nebbioso A., Termolino P. et al. Antiviral Activity of Vitis vinifera Leaf Extract against SARS-CoV-2 and HSV-1. Viruses, 2021, vol. 13, no. 7, article id: 1263. DOI: 10.3390/v13071263.25;12(9):2573

47. Mohamed F.F., Anhlan D., Schöfbänker M., Schreiber A., Classen N., Hensel A., Hempel G., Scholz W., Kühn J., Hrincius E.R. et al.. Hypericum perforatum and Its Ingredients Hypericin and Pseudohypericin Demonstrate an Antiviral Activity against SARS-CoV-2. Pharmaceuticals (Basel), 2022, vol. 15, no. 5, pp. 530. DOI: 10.3390/ph15050530

48. White E.M., Stampfer S.D., Heldwein E.E. Expression, Purification, and Crystallization of HSV-1 Glycoproteins for Structure Determination, Methods Mol Biol., 2020, no. 2060, pp. 377–393. DOI: 10.1007/978-1-4939-9814-2_23

49. Benzekri R., Bouslama L., Papetti A., Hammami M., Smaoui A., Limam F. Anti HSV-2 activity of Peganum harmala (L.) and isolation of the active compound. Microb Pathog., 2018, no. 114, pp. 291–298. DOI: 10.1016/j.micpath.2017.12.017

50. Cheng H.-Y., Lin T.-C., Yang C.-M., Wang K.-C., Lin C.-C. Mechanism of action of the suppression of herpes simplex virus type 2 replication by pterocarnin A. Microbes Infect., 2004, no. 6, pp. 738–744. DOI: 10.1016/j.micinf.2004.03.009

51. Churqui M.P., Lind L., Thörn K., Svensson A., Savolainen O., Aranda K.T., Eriksson K. Extracts of Equisetum giganteum L and Copaifera reticulate Ducke show strong antiviral activity against the sexually transmitted pathogen herpes simplex virus type 2. J. Ethnopharmacol., 2018, no. 210, pp. 192–197. DOI: 10.1016/j.jep.2017.08.010

52. Karamoddini M.K., Emami S.A., Ghannad M.S., Sani E.A., Sahebkar A. Antiviral activities of aerial subsets of Artemisia species against herpes simplex virus type 1 (HSV1) in vitro. Asian Biomed., 2011, vol. 5, no. 1, pp. 63–68. DOI: 10.5372/1905-7415.0501.007

53. Xiao J., Liu P., Hu Y., Liu T., Guo Y., Sun P., Zheng J., Ren Z., Wang Y. Antiviral activities of Artemisia vulgaris L. extract against herpes simplex virus. Chin Med., 2023, vol. 18, no. 1, article number: 21. DOI: 10.1186/s13020-023-00711-1

54. Sinico C., De Logu A., Lai F., Valenti D., Manconi M., Loy G., Bonsignore L., Fadda A. M. Liposomal incorporation of Artemisia arborescens L. essential oil and in vitro antiviral activity. Eur. J. Pharm. Biopharm., 2005, vol. 59, pp. 161_168. DOI: 10.1016/j.ejpb.2004.06.005

55. Lai F., Sinico C., De Logu A., Zaru M., Müller R.H., Fadda A.M. SLN as a topical delivery system for Artemisia arborescens essential oil: In vitro antiviral activity and skin permeation study. Int. J. Nanomed., 2007, vol. 2, no. 3, pp. 419_425.

56. García C.C., Talarico L., Almeida N., Colombres S., Duschatzky C., Damonte E.B. Virucidal activity of essential oils from aromatic plants of San Luis, Argentina. Phytother. Res., 2003, vol. 17, pp. 1073–1075. DOI: 10.1002/ptr.1305

57. Duschatzky C.B., Possetto M.L., Talarico L.B., Garcíam C.C., Michis F., Almeida N.V., de Lampasona M.P., Schuff C., Damonte E.B. Evaluation of chemical and antiviral properties of essential oils from South American plants. Chem. Chemother., 2005, vol. 16, pp. 247–251. DOI: 10.1177/095632020501600404

58. Ekiert H., Pajor J., Klin P., Rzepiela A., Ślesak H., Szopa A. Significance of Artemisia Vulgaris L. (Common Mugwort) in the History of Medicine and Its Possible Contemporary Applications Substantiated by Phytochemical and Pharmacological Studies. Molecules, 2020, vol. 25, no. 19, article id: 4415. DOI: 10.3390/molecules25194415

59. The State Register of Medicines. An online resource. Available at: http://grls.rosminzdrav.ru. (accessed 04.01.2025)

60. Boeing T., de Souza J., da Silva R. de Cássia, Mariano L.N.B., da Silva L.M., Gerhardt G.M., Cretton S., Klein-Junior L.C., de Souza P. Gastroprotective effect of Artemisia absinthium L.: A medicinal plant used in the treatment of digestive disorders. J. Ethnopharmacol., 2023, vol. 312, article id: 116488. DOI: 10.1016/j.jep.2023.116488

61. Makarova D.L., Khanina M.A., Amelchenko V.P., Domrachev D.V., Tkachev A.V. Study of the chemical composition of Artemisia pontica L. essential oil flora of Siberia. Khimiya Ras-titel'nogo Syr'ya [Chemistry of plant materials]. 2008, no. 2, pp. 55–60. (In Russian)

62. Makarova D.L., Velichko V.V. Kim N.E. Khanina M.G., Khanina M.A. Phytochemical study of plants of the flora of Siberia. Farmatsiya [Pharmacy]. 2008, no. 3, pp. 19–22. (In Russian)

63. Trifan A., Zengin G., Sinan K.I., Sieniawska E., Sawicki R., Maciejewska-Turska M., Skalikca-Woźniak K., Luca S.V. Unveiling the Phytochemical Profile and Biological Potential of Five Artemisia. Antioxidants (Basel), 2022, vol. 11, no. 5, article id: 1017. DOI: 10.3390/antiox11051017

64. Hassan S.T.S., Švajdlenka E., Berchová-Bímová K. Hibiscus sabdariffa L. and Its Bioactive Constituents Exhibit Antiviral Activity against HSV-2 and Anti-Enzymatic Properties against Urease by an ESI-MS Based Assay. Molecules, 2017, no. 22, article id: 722. DOI: 10.3390/molecules22050722


Review

For citations:


Каzachinskaia E.I., Velichko V.V., Romanova V.D., Kruglov D.S., Prokusheva D.L., Chepurnov A.A., Коnonova Yu.V., Fu L., Shao Sh., Gulyaeva M.A., Shestopalov A.M. Inactivating and inhibitory activity of dry ethanol extracts of wormwood (Artemisia spp.) on herpes simplex virus of the 2 type in vitro. South of Russia: ecology, development. 2025;20(2):14-36. (In Russ.) https://doi.org/10.18470/1992-1098-2025-2-2

Views: 249


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1992-1098 (Print)
ISSN 2413-0958 (Online)