Preview

South of Russia: ecology, development

Advanced search

Bacterial Composition of Soils in the Fatala River Basin (Guinea) during the Dry Season: An Examination of its Relationship with Ecological Landscape Characteristics

https://doi.org/10.18470/1992-1098-2024-4-9

Abstract

This paper examines the bacterial composition of soils in the Fatala River basin, Republic of Guinea.
This work is based on molecular genetic analysis.
The research findings indicate that the most prevalent phyla are Proteobacteria, Firmicutes, Actinobacteria and Acidobacteria. Notable dominant species include Candidatus Koribacter versatilis and Candidatus Solibacter usitatus. In facies 11, particularly in a bauxite mining zone, there is an increase in cyanobacteria, potentially due to their capacity to enrich soil fertility. Alpha diversity peaks in facies 10, 12, 17 and 18 and bottoms out in facies 7. The decline in alpha diversity in facies 7 might be attributed to the increase in plankomycetes, which produce antimicrobial substances to outcompete other species. When examining beta diversity, facies 10, 12 and 17 show the highest similarity, while facies 3, 5, and 7 exhibit the most significant differences compared to all points analysed.
The identification of the prevailing bacterial phylum and dominant species, along with specific taxa exhibiting increases or decreases in biodiversity, is a crucial first step in characterising the microbial communities found in the natural environments studied. The methodology established can be employed in environmental surveillance and evaluation of the health of diverse soil types.

About the Authors

D. A. Ignateva
A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS
Russian Federation

Darya A. Ignateva

Sevastopol



T. Yu. Gorbunova
A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS
Russian Federation

Tatiana Yu. Gorbunova

Sevastopol



I. Keita
Marine and Coastal Research Centre of Guinea (CEREMAC‐G)
Guinea

Ibrahima Keita

Conakry



Ya. I. Alekseev
Syntol LLC
Russian Federation

Yakov I. Alekseev

Moscow



R. V. Gorbunov
A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS
Russian Federation

Roman V. Gorbunov, Doctor of Geographical Sciences

2 Nakhimov Ave, Sevastopol, 299011. Tel. +79787294312



A. A. Shvartsev
Syntol LLC
Russian Federation

Aleksey A. Shvartsev

Moscow



A. A. Volkov
Syntol LLC
Russian Federation

Aleksandr A. Volkov

Moscow



Yu. A. Monakhova
Syntol LLC
Russian Federation

Yuliya A. Monakhova

Moscow



V. A. Tabunshchik
A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS
Russian Federation

Vladimir A. Tabunshchik

Sevastopol



S. Diakité
Marine and Coastal Research Centre of Guinea (CEREMAC‐G)
Guinea

Sory Diakité

Conakry



A. M. Baldé
Marine and Coastal Research Centre of Guinea (CEREMAC‐G)
Guinea

Abdoulaye M. Baldé

Conakry



M. D. Sow
Marine and Coastal Research Centre of Guinea (CEREMAC‐G)
Guinea

Mamadou D. Sow

Conakry



A. I.P. Diallo
Marine and Coastal Research Centre of Guinea (CEREMAC‐G)
Guinea

Alpha I. P. Diallo

Conakry



References

1. Navarrete A.A., Tsai S.M., Mendes L.W., Faust K., de Hollander M., Cassman N.A., Raes J., van Veen J.A., Kuramae E.E. Soil microbiome responses to the short-term effects of Amazonian deforestation. Mol Ecol, 2015, vol.24, no. 10, pp. 2433–2448. https://doi.org/10.1111/mec.13172.

2. Islam W., Noman A., Naveed H., Huang Z., Chen H.Y.H. Role of environmental factors in shaping the soil microbiome. Environ Sci Pollut Res, 2020, vol. 27, no. 33, pp. 41225–41247. https://doi.org/10.1007/s11356-020-10471-2.

3. Khan S.T., Adil S.F., Shaik M.R., Alkhathlan H.Z., Khan M., Khan M. Engineered Nanomaterials in Soil: Their Impact on Soil Microbiome and Plant Health. Plants, 2022, vol. 11, no. 1, pp. 109. https://doi.org/10.3390/plants11010109.

4. Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol., 2017, vol. 15, no. 10, pp. 579–590. https://doi.org/10.1038/nrmicro.2017.87.

5. Dubey A., Malla M.A., Khan F., Chowdhary K., Yadav S., Kumar A., Sharma S., Khare P.K., Khan M.L. Soil microbiome: a key player for conservation of soil health under changing climate. Biodivers Conserv, 2019, vol. 28, pp. 2405–2429. https://doi.org/10.1007/s10531-019-01760-5.

6. Goss-Souza D., Mendes L.W., Rodrigues J.L.M., Tsai S.M. Ecological Processes Shaping Bulk Soil and Rhizosphere Microbiome Assembly in a Long-Term Amazon Forest-to-Agriculture Conversion. Microb Ecol, 2020, vol. 79, no. 1, pp. 110–122. https://doi.org/10.1007/s00248-019-01401-y.

7. Hermans S.M., Buckley H.L., Case B.S., Curran- Cournane F., Taylor M., Lear G. Bacteria as Emerging Indicators of Soil Condition. Appl Environ Microbiol, 2017, vol. 83, pp. e02826-16. https://doi.org/10.1128/AEM.02826-16

8. Ossowicki A., Raaijmakers J.M., Garbeva P. Disentangling soil microbiome functions by perturbation. Environmental Microbiology Reports, 2021, vol. 13, no. 5, pp. 582–590. https://doi.org/10.1111/1758-2229.12989.

9. Philippot L., Chenu C., Kappler A., Rillig M.C., Fierer N. The interplay between microbial communities and soil properties. Nat Rev Microbiol, 2024, vol. 22, no. 4, pp. 226–239. https://doi.org/10.1038/s41579-023-00980-5.

10. Jansson J.K., McClure R., Egbert R.G. Soil microbiome engineering for sustainability in a changing environment. Nat Biotechnol, 2023, vol. 41, no. 12, pp. 1716–1728. https://doi.org/10.1038/s41587-023-01932-3.

11. Mishra A., Singh L., Singh D. Unboxing the black box—one step forward to understand the soil microbiome: A systematic review. Microb Ecol, 2023, vol. 85, pp. 669–683. https://doi.org/10.1007/s00248-022-01962-5.

12. Hiraishi A., Matsuzawa Y., Kanbe T., Wakao N. Acidisphaera rubrifaciens gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium isolated from acidic environments. International Journal of Systematic and Evolutionary Microbiology, 2000, vol. 50, pp. 1539–1546. https://doi.org/10.1099/00207713-50-4-1539.

13. Okamura K., Hisada T., Kanbe T., Hiraishi A. Rhodovastum atsumiense gen. nov., sp. nov., a phototrophic alphaproteobacterium isolated from paddy soil. J Gen Appl Microbiol, 2009, vol. 55, no. 1, pp. 43–50. https://doi.org/10.2323/jgam.55.43.

14. Ardley J.K., O'Hara G.W., Reeve W.G., Yates R.J., Dilworth M.J., Tiwari R.P., Howieson J.G. Root nodule bacteria isolated from South African Lotononis bainesii, L. listii and L. solitudinis are species of Methylobacterium that are unable to utilize methanol. Arch Microbiol, 2009, vol. 191, no. 4, pp. 311–318. https://doi.org/10.1007/s00203-009-0456-0.

15. Kulichevskaya I.S., Ivanova A.O., Baulina O.I., Bodelier P.L., Damsté J.S., Dedysh S.N. Singulisphaera acidiphila gen. nov., sp. nov., a non-filamentous, Isosphaera-like planctomycete from acidic northern wetlands. Int J Syst Evol Microbiol, 2008, vol. 58, no. 5, pp. 1186–1193. https://doi.org/10.1099/ijs.0.65593-0

16. Ivanova A.A., Naumoff D.G., Kulichevskaya I.S., Rakitin A.L., Mardanov A.V., Ravin N.V., Dedysh S.N. Planctomycetes of the Genus Singulisphaera Possess Chitinolytic Capabilities. Microorganisms, 2024, vol. 12, pp. 1266. https://doi.org/10.3390/microorganisms12071266.

17. Kruppa O., Czermak P. Screening for Biofilm-Stimulating Factors in the Freshwater Planctomycete Planctopirus limnophila to Improve Sessile Growth in a Chemically Defined Medium. Microorganisms, 2022, vol. 10, pp. 801. https://doi.org/10.3390/microorganisms10040801.

18. Jeske O., Surup F., Ketteniß M., Rast P, Förster B., Jogler M., Wink J., Jogler C. Developing Techniques for the Utilization of Planctomycetes As Producers of Bioactive Molecules. Front. Microbiol, 2016, vol. 7, pp. 1242. https://doi.org/10.3389/fmicb.2016.01242.

19. Pizzetti I., Gobet A., Fuchs B.M., Amann R., Fazi S. Abundance and diversity of Planctomycetesin a Tyrrhenian coastal system of central Italy. Aquat Microb Ecol, 2011, vol. 65, pp. 129–141.https://doi.org/10.3354/ame01535.

20. Vieira S., Luckner M., Wanner G., Overmann J. Luteitalea pratensis gen. nov., sp. nov. a new member of subdivision 6 Acidobacteria isolated from temperate grassland soil. Int J Syst Evol Microbiol, 2017, vol. 67, no. 5, pp. 1408–1414. https://doi.org/10.1099/ijsem.0.001827.

21. Challacombe J.F., Eichorst S.A., Hauser L., Land M., Xie G., Kuske C.R. Biological consequences of ancient gene acquisition and duplication in the large genome of Candidatus Solibacter usitatus Ellin6076. PLoS One, 2011, vol. 6, no. 9, pp. e24882. https://doi.org/10.1371/journal.pone.0024882.

22. Rawat S.R., Männistö M.K., Bromberg Y., Häggblom M.M. Comparative genomic and physiological analysis provides insights into the role of Acidobacteria in organic carbon utilization in Arctic tundra soils. FEMS Microbiol Ecol, 2012, vol. 82, no. 2, pp. 341–355. https://doi.org/10.1111/j.1574-6941.2012.01381.x.

23. Liu Y., Wang L.H., Hao C.B., Li L., Li S.Y., Feng C.P. Microbial diversity and ammonia-oxidizing microorganism of a soil sample near an acid mine drainage lake. Huan Jing Ke Xue, 2014, vol. 35, no. 6, pp. 2305–2313. (In Chinese). https://doi.org/10.13227/j.hjkx.2014.06.037.

24. Ignateva D.I., Volkov A.A, Shvartsev A.A., Alekseev Y.I. Sposob vydeleniya total'noy dna bakteriy iz obrazcov pochvy, sposob otsenki bakterial'nogo sostava pochv posredstvom metagenomnogo sekvenirovaniya i nabory dlya osushchestvleniya sposobov [Method for isolating total bacterial DNA from soil samples, method for assessing bacterial composition of soils using metagenomic sequencing and kits for implementing the methods]. Patent RF, no. 2829656, 2024.

25. Lee J.S., Lee K.C., Kim K.K., Lee B. Complete genome sequence of the Aneurinibacillus soli CB4(T) from soil of mountain. J Biotechnol, 2016, vol. 221, pp. 116–117. https://doi.org/10.1016/j.jbiotec.2016.01.027.

26. De Canha M.N., Komarnytsky S., Langhansova L., Lall N. Exploring the Anti-Acne Potential of Impepho [Helichrysum odoratissimum (L.) Sweet] to Combat Cutibacterium acnes Virulence. Front Pharmacol, 2020, vol. 10, pp. 1559. https://doi.org/10.3389/fphar.2019.01559.

27. Rayyan A.A., Kyndt J.A. Genome Sequences of Rhodoplanes serenus and Two Thermotolerant Strains, Rhodoplanes tepidamans and "Rhodoplanes cryptolactis," Further Refine the Genus. Microbiol Resour Announc, 2023, vol. 12, no. 7, pp. e0009923. https://doi.org/10.1128/mra.00099-23.

28. Wu Y., Song Q., Wu J., Zhou J., Zhou L., Wu W. Field study on the soil bacterial associations to combined contamination with heavy metals and organic contaminants. Sci Total Environ, 2021, vol. 778, pp. 146282. https://doi.org/10.1016/j.scitotenv.2021.146282.

29. Too C.C., Keller A., Sickel W., Lee S.M., Yule C.M. Microbial Community Structure in a Malaysian Tropical Peat Swamp Forest: The Influence of Tree Species and Depth. Front. Microbiol, 2018, vol. 9, pp. 2859. https://doi.org/10.3389/fmicb.2018.02859.

30. Crnkovic C.M., Braesel J., Krunic A., Eustáquio A.S., Orjala J. Scytodecamide from the Cultured Scytonema sp. UIC 10036 Expands the Chemical and Genetic Diversity of Cyanobactins. Chembiochem, 2020, vol. 21, no. 6, pp. 845–852.https://doi.org/10.1002/cbic.201900511.

31. Adelizzi R., O'Brien E.A., Hoellrich M., Rudgers J.A., Mann M., Fernandes V.M.C., Darrouzet-Nardi A., Stricker E. Disturbance to biocrusts decreased cyanobacteria, N-fixer abundance, and grass leaf N but increased fungal abundance. Ecology, 2022, vol. 103, no. 4, pp. e3656. https://doi.org/10.1002/ecy.3656.

32. Nikolaivits E., Taxeidis G., Gkountela C., Vouyiouka S., Maslak V., Nikodinovic-Runic J., Topakas E. A polyesterase from the Antarctic bacterium Moraxella sp. degrades highly crystalline synthetic polymers. J Hazard Mater, 2022, vol. 434, pp. 128900. https://doi.org/10.1016/j.jhazmat.2022.128900.

33. Hervé V., Junier T., Bindschedler S., Verrecchia E., Junier P. Diversity and ecology of oxalotrophic bacteria. World J Microbiol Biotechnol, 2016, vol. 32, no. 2, pp. 28. https://doi.org/10.1007/s11274-015-1982-3.

34. Ling N., Wang T., Kuzyakov Y. Rhizosphere bacteriome structure and functions. Nat Commun, 2022, vol. 13, no. 1, pp. 836. https://doi.org/10.1038/s41467-022-28448-9.

35. Gu Z., Feng K., Li Y., Li Q. Microbial characteristics of the leachate contaminated soil of an informal landfill site. Chemosphere, 2022, vol. 287, no. 2, pp. 132155. https://doi.org/10.1016/j.chemosphere.2021.132155.

36. Li Y., Zheng B., Yang Y., Chen K., Chen X., Huang X., Wang X. Soil microbial ecological effect of shale gas oilbased drilling cuttings pyrolysis residue used as soil covering material. J Hazard Mater, 2022, vol. 436, pp. 129231. https://doi.org/10.1016/j.jhazmat.2022.129231.

37. Gao H., Wu M., Liu H., Xu Y., Liu Z. Effect of petroleum hydrocarbon pollution levels on the soil microecosystem and ecological function. Environ Pollut, 2022, vol. 15, no. 293, pp. 118511. https://doi.org/10.1016/j.envpol.2021.118511.

38. Brennan F.P., Moynihan E., Griffiths B.S., Hillier S., Owen J., Pendlowski H., Avery L.M. Clay mineral type effect on bacterial enteropathogen survival in soil. Sci Total Environ, 2014, vol. 468–469, pp. 302–305. https://doi.org/10.1016/j.scitotenv.2013.08.037.

39. Callahan M.T., Micallef S.A., Buchanan R.L. Soil Type, Soil Moisture, and Field Slope Influence the Horizontal Movement of Salmonella enterica and Citrobacter freundii from Floodwater through Soil. J Food Prot, 2017, vol. 80, no. 1, pp. 189–197. https://doi.org/10.4315/0362-028X.JFP-16-263.

40. Phan-Thien K., Metaferia M.H., Bell T.L., Bradbury M.I., Sassi H.P., van Ogtrop F.F., Suslow T.V., McConchie R. Effect of soil type and temperature on survival of Salmonella enterica in poultry manure-amended soils. Lett Appl Microbiol, 2020, vol. 71, no. 2, pp. 210–217. https://doi.org/10.1111/lam.13302.

41. Kuramae E.E., Yergeau E., Wong L.C., Pijl A.S., van Veen J.A., Kowalchuk G.A. Soil characteristics more strongly influence soil bacterial communities than land-use type. FEMS Microbiol Ecol, 2012, vol. 79, no. 1, pp. 12–24. https://doi.org/10.1111/j.1574-6941.2011.01192.x.

42. Han X., Huang C., Khan S., Zhang Y., Chen Y., Guo J. nirS-type denitrifying bacterial communities in relation to soil physicochemical conditions and soil depths of two montane riparian meadows in North China. Environ Sci Pollut Res Int, 2020, vol. 27, no. 23, pp. 28899–28911. https://doi.org/10.1007/s11356-020-09171-8.

43. Hedrich S., Schlömann M., Johnson D.B. The ironoxidizing proteobacteria. Microbiology (Reading), 2011, vol. 157, no. 6, pp. 1551–1564.https://doi.org/10.1099/mic.0.045344-0.

44. Ghosh S., Bagchi A. Protein dynamics and molecular motions study in relation to molecular interaction between proteins from sulfur oxidizing proteobacteria Allochromatium vinosum. J Biomol Struct Dyn, 2021, vol. 39, no. 8, pp. 2771–2787. https://doi.org/10.1080/07391102.2020.1754914.

45. Shao M.F., Zhang T., Fang H.H. Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications. Appl Microbiol Biotechnol, 2010, vol. 88, no. 5, pp. 1027–1042. https://doi.org/10.1007/s00253-010-2847-1.

46. Puri A.W. Specialized Metabolites from Methylotrophic Proteobacteria. Curr Issues Mol Biol, 2019, vol. 33, pp. 211–224. https://doi.org/10.21775/cimb.033.211.

47. Sánchez-Marañón M., Miralles I., Aguirre-Garrido J.F., Anguita-Maeso M., Millán V., Ortega R., García-Salcedo J.A., Martínez-Abarca F., Soriano M. Changes in the soil bacterial community along a pedogenic gradient. Sci Rep, 2017, vol. 7, pp. 14593. https://doi.org/10.1038/s41598-017-15133-x

48. Lee K.C., Morgan X.C., Dunfield P.F., Tamas I., McDonald I.R., Stott M.B. Genomic analysis of Chthonomonas calidirosea, the first sequenced isolate of the phylum Armatimonadetes. ISME J, 2014, vol. 8, no. 7, pp. 1522–1533. https://doi.org/10.1038/ismej.2013.251.

49. Langendries S., Goormachtig S. Paenibacillus polymyxa, a Jack of all trades. Environ Microbiol, 2021, vol. 23, no. 10, pp. 5659–5669. https://doi.org/10.1111/1462-2920.15450.

50. Liu L., Wang Z., Ma D., Zhang M., Fu L. Diversity and Distribution Characteristics of Soil Microbes across Forest–Peatland Ecotones in the Permafrost Regions. Int. J. Environ. Res. Public Health, 2022, vol. 19, pp. 14782. https://doi.org/10.3390/ijerph192214782.

51. Abinandan S., Subashchandrabose S.R., Venkateswarlu K., Megharaj M. Soil microalgae and cyanobacteria: the biotechnological potential in the maintenance of soil fertility and health. Crit Rev Biotechnol, 2019, vol. 39, no. 8, pp. 981–998. https://doi.org/10.1080/07388551.2019.1654972.

52. Nowruzi B., Bouaïcha N., Metcalf J.S., Porzani S.J., Konur O. Plant-cyanobacteria interactions: Beneficial and harmful effects of cyanobacterial bioactive compounds on soil-plant systems and subsequent risk to animal and human health. Phytochemistry, 2021, vol. 192, pp. 112959. https://doi.org/10.1016/j.phytochem.2021.112959.

53. Aoyagi T., Inaba T., Aizawa H., Mayumi D., Sakata S., Charfi A., Suh C., Lee J.H., Sato Y., Ogata A., Habe H., Hori T. Unexpected diversity of acetate degraders in anaerobic membrane bioreactor treating organic solid waste revealed by high-sensitivity stable isotope probing. Water Res, 2020, vol. 176, pp. 115750. https://doi.org/10.1016/j.watres.2020.115750.

54. Martinez M.A., Woodcroft B.J., Ignacio Espinoza J.C., Zayed A.A., Singleton C.M., Boyd J.A., Li Y.F., Purvine S., Maughan H., Hodgkins S.B., Anderson D., Sederholm M., Temperton B., Bolduc B., Saleska S.R., Tyson G.W., Rich V.I., IsoGenie Project Coordinators, Saleska S.R., Tyson G.W., Rich V.I. Discovery and ecogenomic context of a global Caldiserica-related phylum active in thawing permafrost, Candidatus Cryosericota phylum nov., Ca. Cryosericia class nov., Ca. Cryosericales ord. nov., Ca. Cryosericaceae fam. nov., comprising the four species Cryosericum septentrionale gen. nov. sp. nov., Ca. C. hinesii sp. nov., Ca. C. odellii sp. nov., Ca. C. terrychapinii sp. nov. Syst Appl Microbiol, 2019, vol. 42, no. 1, pp. 54–66. https://doi.org/10.1016/j.syapm.2018.12.003.

55. Dyksma S., Gallert C. Candidatus Syntrophosphaera thermopropionivorans: a novel player in syntrophic propionate oxidation during anaerobic digestion. Environ Microbiol Rep, 2019, vol. 11, no. 4, pp. 558–570. https://doi.org/10.1111/1758-2229.12759.

56. Zhou S., Wang G., Han. Q., Zhang J., Dang H., Ning H., Gao Y., Sun J. Long-term saline water irrigation affected soil carbon and nitrogen cycling functional profiles in the cotton field. Front Microbiol, 2024, vol. 15, pp. 1310387. https://doi.org/10.3389/fmicb.2024.1310387.

57. Rozanov A.S., Bryanskaya A.V., Malup T.K., Meshcheryakova I.A., Lazareva E.V., Taran O.P., Ivanisenko T.V., Ivanisenko V.A., Zhmodik S.M., Kolchanov N.A., Peltek S.E. Molecular analysis of the benthos microbial community in Zavarzin thermal spring (Uzon Caldera, Kamchatka, Russia). BMC Genomics, 2014, vol. 12, pp. S12. https://doi.org/10.1186/1471-2164-15-S12-S12.

58. Kadnikov V.V., Savvichev A.S., Mardanov A.V., Beletsky A.V., Chupakov A.V., Kokryatskaya N.M., Pimenov N.V., Ravin N.V. Metabolic Diversity and Evolutionary History of the Archaeal Phylum "Candidatus Micrarchaeota" Uncovered from a Freshwater Lake Metagenome. Appl Environ Microbiol, 2020, vol. 86, no. 23, pp. e02199-20. https://doi.org/10.1128/AEM.02199-20.

59. Golyshina O.V., Bargiela R., Toshchakov S.V., Chernyh N.A., Ramayah S., Korzhenkov A.A., Kublanov I.V., Golyshin P.N. Diversity of “Ca. Micrarchaeota” in Two Distinct Types of Acidic Environments and Their Associations with Thermoplasmatales. Genes, 2019, vol. 10, pp. 461. https://doi.org/10.3390/genes10060461.

60. van Vliet D.M., Palakawong Na Ayudthaya S., Diop S., Villanueva L., Stams A.J.M., Sánchez-Andrea I. Anaerobic Degradation of Sulfated Polysaccharides by Two Novel Kiritimatiellales Strains Isolated From Black Sea Sediment. Front Microbiol, 2019, vol. 10, pp. 253. https://doi.org/10.3389/fmicb.2019.00253.

61. Constancias F., Saby N.P., Terrat S., Dequiedt S., Horrigue W., Nowak V., Guillemin J.P., Biju-Duval L., Chemidlin Prévost-Bouré N., Ranjard L. Contrasting spatial patterns and ecological attributes of soil bacterial and archaeal taxa across a landscape. Microbiologyopen, 2015, vol. 4, no.3, pp. 518–531. https://doi.org/10.1002/mbo3.256

62. Hu M., Sardans J., Sun D., Yan R., Wu H., Ni R., Peñuelas J. Microbial diversity and keystone species drive soil nutrient cycling and multifunctionality following mangrove restoration. Environ Res, 2024, vol. 251, no. 2, pp. 118715. https://doi.org/10.1016/j.envres.2024.118715

63. Sidiki S. Bauxite Mining in the Boké Region (Western Guinea): Method Used and Impacts on Physical Environment. European. Journal of Sustainable Development Research, 2019, vol. 3, no. 3, pp. em0087. https://doi.org/10.29333/ejosdr/5735

64. Kolie B., Jun Y., Sunahara G., Camara M. Characterization of the rock blasting process impacts in Lefa gold mine, Republic of Guinea. Environ Earth Sci, 2021, vol. 80, pp. 175. https://doi.org/10.1007/s12665-021-09477-x

65. Tabunschik V., Gorbunov R., Bratanov N., Gorbunova T., Mirzoeva N., Voytsekhovskaya V. Fatala River Basin (Republic of Guinea, Africa): Analysis of Current State, Air Pollution, and Anthropogenic Impact Using Geoinformatics Methods and Remote Sensing Data. Sustainability, 2023, vol. 15, pp. 15798. https://doi.org/10.3390/su152215798.

66. Sidibé D., Konaté A.A., Kaba O.B., Traoré S. Bauxite Mining Industry in Guinea and the Valorization Prospects of the Resulting Residue for Engineering Purposes. Novel Perspectives of Engineering Research, 2021, vol. 4, pp. 94–110. https://doi.org/10.9734/bpi/nper/v4/3680F.

67. Diallo P. Regime Stability, Social Insecurity and Bauxite Mining in Guinea. Developments Since the Mid-Twentieth Century, 1st ed., London, UK, 2019, 142 p. https://doi.org/10.4324/9780429286544.

68. Diallo A.K., Conte M.S.M., Kaba O.B., Soumah A., Camara M. Petrological and Statistical Studies of the Limbiko Bauxite Deposit, Republic of Guinea. International Journal of Geosciences, 2023, vol. 14, pp. 351–376. https://doi.org/10.4236/ijg.2023.144020.

69. Wilhelm C., Maconachie R. Exploring local content in Guinea's bauxite sector: Obstacles, opportunities and future trajectories. Resources Policy, 2020, vol. 71, pp. 101935. https://doi.org/10.1016/j.resourpol.2020.101935

70. Knierzinger J. The socio-political implications of bauxite mining in Guinea: A commodity chain perspective. Extractive Industries and Society, 2014, vol. 1, pp. 20–27. https://doi.org/10.1016/j.exis.2014.01.005.

71. Daniel R. The metagenomics of soil. Nat Rev Microbiol, 2005, vol. 3, pp. 470–478. https://doi.org/10.1038/nrmicro1160.

72. Chernov T.I., Kholodov V.A., Kogut B.M., Ivanov A.L. The Method of Microbiological Soil Investigations within the Framework of the Project “Microbiome of Russia”. Dokuchaev Soil Bulletin, 2017, vol. 87, pp. 100–113. (In Russian) https://doi.org/10.19047/0136-1694-2017-87-100-113

73. Jones A., Breuning-Madsen H., Brossard M., Dampha A., Dewitte O., Hallett S., Jones R., Kilasara M., Le Roux P., Micheli E., Montanarella L., Spaargaren O., Tahar G., Thiombiano L., Van Ranst E., Yemefack M., Zougmore R. Soil Atlas of Africa. Luxembourg, Luxembourg, 2013, 176 p.

74. Gorbunova, T., Gorbunov, R., Camara, A.I., Bratanov, N., Sow, B.B., Pham, C.N., Safonova, M., Faerman, A., Tabunshchik, V., Nikiforova, A., Lineva, N., Diallo, A.I.P., Keita, I. Heavy Metals in Soils of the Fatala River Basin (Republic of Guinea). RGSA2024, vol. 18, pp. e08309. https://doi.org/10.24857/rgsa.v18n9-161


Review

For citations:


Ignateva D.A., Gorbunova T.Yu., Keita I., Alekseev Ya.I., Gorbunov R.V., Shvartsev A.A., Volkov A.A., Monakhova Yu.A., Tabunshchik V.A., Diakité S., Baldé A.M., Sow M.D., Diallo A.I. Bacterial Composition of Soils in the Fatala River Basin (Guinea) during the Dry Season: An Examination of its Relationship with Ecological Landscape Characteristics. South of Russia: ecology, development. 2024;19(4):110-130. https://doi.org/10.18470/1992-1098-2024-4-9

Views: 221


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1992-1098 (Print)
ISSN 2413-0958 (Online)