Бактериальный состав почв бассейна реки Фатала (Гвинейская Республика) в сухой сезон и его взаимосвязь с экологическими характеристиками ландшафтов
https://doi.org/10.18470/1992-1098-2024-4-9
Аннотация
В данной статье рассматривается бактериальный состав почв в бассейне реки Фатала (Гвинейская Республика).
Работа основана на молекулярно‐генетическом анализе.
Результаты исследования показывают, что наиболее представленные филумы — это Proteobacteria, Firmicutes, Actinobacteria и Acidobacteria.
В качестве видов‐доминантов наиболее часто отмечены Candidatus Koribacter versatilis и Candidatus Solibacter usitatus. В фации 11, в районе, специализирующемся на добыче бокситов, наблюдается увеличение цианобактерий, что может быть связано с их способностью восстанавливать плодородие почв. Наиболее высокие показатели альфа‐разнообразия фиксируются в фациях 10, 12, 17 и 18, а наименьшие – в фации 7. Снижение альфа‐разнообразия в фации 7 может быть связано с увеличением численности планкомицетов, способные вырабатывать антимикробные вещества для устранения видов‐конкурентов. При оценке бета‐разнообразия выявлено, что наиболее схожими являются фации 10, 12 и 17, а фации 3, 5 и 7 имеют наибольшие отличия в сравнении со всеми проанализированными точками.
Выявление преобладающих бактериальных филумов и видов‐доминантов, а также специфических видов с фиксацией повышения или понижения биоразнообразия является важным шагом для оценки характерных для исследуемых природных объектов микроорганизмов. Разработанный подход может быть применен для проведения экологического мониторинга и оценки состояния различных типов почв.
Ключевые слова
Об авторах
Д. А. ИгнатьеваРоссия
Дарья A. Игнатьева
Севастополь
Т. Ю. Горбунова
Россия
Татьяна Ю. Горбунова
Севастополь
И. Кейта
Гвинея
Ибрагима Кейта
Конакри
Я. И. Алексеев
Россия
Яков И. Алексеев
Москва
Р. В. Горбунов
Россия
Роман В. Горбунов, доктор географических наук
299011, Севастополь, Нахимова 2. Тел. +79787294312
А. А. Шварцев
Россия
Алексей А. Шварцев
Москва
А. А. Волков
Россия
Александр А. Волков
Москва
Ю. А. Монахова
Россия
Юлия А. Монахова
Москва
В. А. Табунщик
Россия
Владимир А. Табунщик
Севастополь
С. Диаките
Гвинея
Сори Диаките
Конакри
А. М. Балде
Гвинея
Абдулайе М. Балде
Конакри
М. Д. Соу
Гвинея
Мамаду Д. Соу
Конакри
А. И.П. Диалло
Гвинея
Альфа И. П. Диалло
Конакри
Список литературы
1. Mishra A., Singh L., Singh D. Unboxing the black box—one step forward to understand the soil microbiome: A systematic review // Microb Ecol, 2023, vol. 85, pp. 669–683. https://doi.org/10.1007/s00248-022-01962-5
2. Hiraishi A., Matsuzawa Y., Kanbe T., Wakao N. Acidisphaera rubrifaciens gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium isolated from acidic environments // International Journal of Systematic and Evolutionary Microbiology, 2000, vol. 50, pp. 1539–1546. https://doi.org/10.1099/00207713-50-4-1539
3. Okamura K., Hisada T., Kanbe T., Hiraishi A. Rhodovastum atsumiense gen. nov., sp. nov., a phototrophic alphaproteobacterium isolated from paddy soil // J Gen Appl Microbiol, 2009, vol. 55, no. 1, pp. 43–50. https://doi.org/10.2323/jgam.55.43
4. Ardley J.K., O'Hara G.W., Reeve W.G., Yates R.J., Dilworth M.J., Tiwari R.P., Howieson J.G. Root nodule bacteria isolated from South African Lotononis bainesii, L. listii and L. solitudinis are species of Methylobacterium that are unable to utilize methanol // Arch Microbiol, 2009, vol. 191, no. 4, pp. 311–318. https://doi.org/10.1007/s00203-009-0456-0
5. Kulichevskaya I.S., Ivanova A.O., Baulina O.I., Bodelier P.L., Damsté J.S., Dedysh S.N. Singulisphaera acidiphila gen. nov., sp. nov., a non-filamentous, Isosphaera-like planctomycete from acidic northern wetlands // Int J Syst Evol Microbiol, 2008, vol. 58, no. 5, pp. 1186–1193. https://doi.org/10.1099/ijs.0.65593-0
6. Ivanova A.A., Naumoff D.G., Kulichevskaya I.S., Rakitin A.L., Mardanov A.V., Ravin N.V., Dedysh S.N. Planctomycetes of the Genus Singulisphaera Possess Chitinolytic Capabilities // Microorganisms, 2024, vol. 12, pp. 1266. https://doi.org/10.3390/microorganisms12071266
7. Kruppa O., Czermak P. Screening for Biofilm-Stimulating Factors in the Freshwater Planctomycete Planctopirus limnophila to Improve Sessile Growth in a Chemically Defined Medium // Microorganisms, 2022, vol. 10, pp. 801. https://doi.org/10.3390/microorganisms10040801
8. Jeske O., Surup F., Ketteniß M., Rast P, Förster B., Jogler M., Wink J., Jogler C. Developing Techniques for the Utilization of Planctomycetes As Producers of Bioactive Molecules // Front. Microbiol, 2016, vol. 7, pp. 1242. https://doi.org/10.3389/fmicb.2016.01242
9. Pizzetti I., Gobet A., Fuchs B.M., Amann R., Fazi S. Abundance and diversity of Planctomycetesin a Tyrrhenian coastal system of central Italy // Aquat Microb Ecol, 2011, vol. 65, pp. 129–141. https://doi.org/10.3354/ame01535
10. Vieira S., Luckner M., Wanner G., Overmann J. Luteitalea pratensis gen. nov., sp. nov. a new member of subdivision 6 Acidobacteria isolated from temperate grassland soil // Int J Syst Evol Microbiol, 2017, vol. 67, no. 5, pp. 1408–1414. https://doi.org/10.1099/ijsem.0.001827
11. Mishra A., Singh L., Singh D. Unboxing the black box—one step forward to understand the soil microbiome: A systematic review // Microb Ecol, 2023, vol. 85, pp. 669–683. https://doi.org/10.1007/s00248-022-01962-5
12. Hiraishi A., Matsuzawa Y., Kanbe T., Wakao N. Acidisphaera rubrifaciens gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium isolated from acidic environments // International Journal of Systematic and Evolutionary Microbiology, 2000, vol. 50, pp. 1539–1546. https://doi.org/10.1099/00207713-50-4-1539
13. Okamura K., Hisada T., Kanbe T., Hiraishi A. Rhodovastum atsumiense gen. nov., sp. nov., a phototrophic alphaproteobacterium isolated from paddy soil // J Gen Appl Microbiol, 2009,vol. 55, no. 1, pp. 43–50. https://doi.org/10.2323/jgam.55.43
14. Ardley J.K., O'Hara G.W., Reeve W.G., Yates R.J., Dilworth M.J., Tiwari R.P., Howieson J.G. Root nodule bacteria isolated from South African Lotononis bainesii, L. listii and L. solitudinis are species of Methylobacterium that are unable to utilize methanol // Arch Microbiol, 2009, vol. 191, no. 4, pp. 311–318. https://doi.org/10.1007/s00203-009-0456-0
15. Kulichevskaya I.S., Ivanova A.O., Baulina O.I., Bodelier P.L., Damsté J.S., Dedysh S.N. Singulisphaera acidiphila gen. nov., sp. nov., a non-filamentous, Isosphaera-like planctomycete from acidic northern wetlands // Int J Syst Evol Microbiol, 2008, vol. 58, no. 5, pp. 1186–1193. https://doi.org/10.1099/ijs.0.65593-0
16. Ivanova A.A., Naumoff D.G., Kulichevskaya I.S., Rakitin A.L., Mardanov A.V., Ravin N.V., Dedysh S.N. Planctomycetes of the Genus Singulisphaera Possess Chitinolytic Capabilities // Microorganisms, 2024, vol. 12, pp. 1266. https://doi.org/10.3390/microorganisms12071266
17. Kruppa O., Czermak P. Screening for Biofilm-Stimulating Factors in the Freshwater Planctomycete Planctopirus limnophila to Improve Sessile Growth in a Chemically Defined Medium // Microorganisms, 2022, vol. 10, pp. 801. https://doi.org/10.3390/microorganisms10040801
18. Jeske O., Surup F., Ketteniß M., Rast P, Förster B., Jogler M., Wink J., Jogler C. Developing Techniques for the Utilization of Planctomycetes As Producers of Bioactive Molecules // Front. Microbiol, 2016, vol. 7, pp. 1242. https://doi.org/10.3389/fmicb.2016.01242
19. Pizzetti I., Gobet A., Fuchs B.M., Amann R., Fazi S. Abundance and diversity of Planctomycetesin a Tyrrhenian coastal system of central Italy // Aquat Microb Ecol, 2011, vol. 65, pp. 129–141. https://doi.org/10.3354/ame01535
20. Vieira S., Luckner M., Wanner G., Overmann J. Luteitalea pratensis gen. nov., sp. nov. a new member of subdivision 6 Acidobacteria isolated from temperate grassland soil // Int J Syst Evol Microbiol, 2017, vol. 67, no. 5, pp. 1408–1414. https://doi.org/10.1099/ijsem.0.001827
21. Challacombe J.F., Eichorst S.A., Hauser L., Land M., Xie G., Kuske C.R. Biological consequences of ancient gene acquisition and duplication in the large genome of Candidatus Solibacter usitatus Ellin6076 // PLoS One. 2011, vol. 6, no. 9, pp. e24882. https://doi.org/10.1371/journal.pone.0024882
22. Rawat S.R., Männistö M.K., Bromberg Y., Häggblom M.M. Comparative genomic and physiological analysis provides insights into the role of Acidobacteria in organic carbon utilization in Arctic tundra soils // FEMS Microbiology Ecology. 2012, vol. 82, no. 2, pp. 341–355. https://doi.org/10.1111/j.1574-6941.2012.01381.x
23. Liu Y., Wang L.H., Hao C.B., Li L., Li S.Y., Feng C.P. Microbial diversity and ammonia-oxidizing microorganism of a soil sample near an acid mine drainage lake // Huan Jing Ke Xue. 2014, vol. 35, no. 6, pp. 2305–2313. (In Chinese). https://doi.org/10.13227/j.hjkx.2014.06.037
24. Игнатьева Д.И., Волков А.А., Шварцев А.А., Алексеев Я.И. Способ выделения тотальной ДНК бактерий из образцов почвы, способ оценки бактериального состава почв посредством метагеномного секвенирования и наборы для осуществления способов. Патент RU 2829656 C1, 2024.
25. Lee J.S., Lee K.C., Kim K.K., Lee B. Complete genome sequence of the Aneurinibacillus soli CB4(T) from soil of mountain // Journal of Biotechnology. 2016, vol. 221, pp. 116–117. https://doi.org/10.1016/j.jbiotec.2016.01.027
26. De Canha M.N., Komarnytsky S., Langhansova L., Lall N. Exploring the Anti-Acne Potential of Impepho [Helichrysum odoratissimum (L.) Sweet] to Combat Cutibacterium acnes Virulence // Frontiers in Pharmacology. 2020, vol. 10, pp. 1559. https://doi.org/10.3389/fphar.2019.01559
27. Rayyan A.A., Kyndt J.A. Genome Sequences of Rhodoplanes serenus and Two Thermotolerant Strains, Rhodoplanes tepidamans and "Rhodoplanes cryptolactis," Further Refine the Genus // Microbiology Resource Announcements. 2023, vol. 12, no. 7, pp. e0009923. https://doi.org/10.1128/mra.00099-23
28. Wu Y., Song Q., Wu J., Zhou J., Zhou L., Wu W. Field study on the soil bacterial associations to combined contamination with heavy metals and organic contaminants // Science of The Total Environment. 2021, vol. 778, pp. 146282. https://doi.org/10.1016/j.scitotenv.2021.146282
29. Too C.C., Keller A., Sickel W., Lee S.M., Yule C.M. Microbial Community Structure in a Malaysian Tropical Peat Swamp Forest: The Influence of Tree Species and Depth // Frontiers in Microbiology. 2018, vol. 9, pp. 2859. https://doi.org/10.3389/fmicb.2018.02859
30. Crnkovic C.M., Braesel J., Krunic A., Eustáquio A.S., Orjala J. Scytodecamide from the Cultured Scytonema sp. UIC 10036 Expands the Chemical and Genetic Diversity of Cyanobactins // ChemBioChem. 2020, vol. 21, no. 6, pp. 845–852. https://doi.org/10.1002/cbic.201900511
31. Adelizzi R., O'Brien E.A., Hoellrich M., Rudgers J.A., Mann M., Fernandes V.M.C., Darrouzet-Nardi A., Stricker E. Disturbance to biocrusts decreased cyanobacteria, N-fixer abundance, and grass leaf N but increased fungal abundance // Ecology. 2022, vol. 103, no. 4, pp. e3656. https://doi.org/10.1002/ecy.3656
32. Nikolaivits E., Taxeidis G., Gkountela C., Vouyiouka S., Maslak V., Nikodinovic-Runic J., Topakas E. A polyesterase from the Antarctic bacterium Moraxella sp. degrades highly crystalline synthetic polymers // Journal of Hazardous Materials. 2022, vol. 434, pp. 128900. https://doi.org/10.1016/j.jhazmat.2022.128900
33. Hervé V., Junier T., Bindschedler S., Verrecchia E., Junier P. Diversity and ecology of oxalotrophic bacteria // World Journal of Microbiology and Biotechnology. 2016, vol. 32, no. 2, pp. 28. https://doi.org/10.1007/s11274-015-1982-3
34. Ling N., Wang T., Kuzyakov Y. Rhizosphere bacteriome structure and functions // Nature Communications. 2022, vol. 13, no. 1, pp. 836. https://doi.org/10.1038/s41467-022-28448-9
35. Gu Z., Feng K., Li Y., Li Q. Microbial characteristics of the leachate contaminated soil of an informal landfill site // Chemosphere. 2022, vol. 287, no. 2, pp. 132155. https://doi.org/10.1016/j.chemosphere.2021.132155
36. Li Y., Zheng B., Yang Y., Chen K., Chen X., Huang X., Wang X. Soil microbial ecological effect of shale gas oil-based drilling cuttings pyrolysis residue used as soil covering material // Journal of Hazardous Materials. 2022, vol. 436, pp. 129231. https://doi.org/10.1016/j.jhazmat.2022.129231
37. Gao H., Wu M., Liu H., Xu Y., Liu Z. Effect of petroleum hydrocarbon pollution levels on the soil microecosystem and ecological function // Environmental Pollution. 2022, vol. 15, no. 293, pp. 118511. https://doi.org/10.1016/j.envpol.2021.118511
38. Brennan F.P., Moynihan E., Griffiths B.S., Hillier S., Owen J., Pendlowski H., Avery L.M. Clay mineral type effect on bacterial enteropathogen survival in soil // Science of The Total Environment. 2014, vol. 468-469, pp. 302–305. https://doi.org/10.1016/j.scitotenv.2013.08.037
39. Callahan M.T., Micallef S.A., Buchanan R.L. Soil Type, Soil Moisture, and Field Slope Influence the Horizontal Movement of Salmonella enterica and Citrobacter freundii from Floodwater through Soil // Journal of Food Protection. 2017, vol. 80, no. 1, pp. 189–197. https://doi.org/10.4315/0362-028X.JFP-16-263
40. Phan-Thien K., Metaferia M.H., Bell T.L., Bradbury M.I., Sassi H.P., van Ogtrop F.F., Suslow T.V., McConchie R. Effect of soil type and temperature on survival of Salmonella enterica in poultry manure-amended soils // Letters in Applied Microbiology. 2020, vol. 71, no. 2, pp. 210–217. https://doi.org/10.1111/lam.13302
41. Kuramae E.E., Yergeau E., Wong L.C., Pijl A.S., van Veen J.A., Kowalchuk G.A. Soil characteristics more strongly influence soil bacterial communities than land-use type // FEMS Microbiology Ecology. 2012, vol. 79, no. 1, pp. 12–24. https://doi.org/10.1111/j.1574-6941.2011.01192.x
42. Han X., Huang C., Khan S., Zhang Y., Chen Y., Guo J. nirStype denitrifying bacterial communities in relation to soil physicochemical conditions and soil depths of two montane riparian meadows in North China // Environmental Science and Pollution Research International. 2020, vol. 27, no. 23, pp. 28899–28911. https://doi.org/10.1007/s11356-020-09171-8
43. Hedrich S., Schlömann M., Johnson D.B. The iron-oxidizing proteobacteria // Microbiology (Reading). 2011, vol. 157, no. 6, pp. 1551–1564. https://doi.org/10.1099/mic.0.045344-0
44. Ghosh S., Bagchi A. Protein dynamics and molecular motions study in relation to molecular interaction between proteins from sulfur oxidizing proteobacteria Allochromatium vinosum // Journal of Biomolecular Structure and Dynamics. 2021, vol. 39, no. 8, pp. 2771–2787. https://doi.org/10.1080/07391102.2020.1754914
45. Shao M.F., Zhang T., Fang H.H. Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications // Applied Microbiology and Biotechnology. 2010, vol. 88, no. 5, pp. 1027–1042. https://doi.org/10.1007/s00253-010-2847-1
46. Puri A.W. Specialized Metabolites from Methylotrophic Proteobacteria // Current Issues in Molecular Biology. 2019, vol. 33, pp. 211–224. https://doi.org/10.21775/cimb.033.211
47. Sánchez-Marañón M., Miralles I., Aguirre-Garrido J.F., Anguita-Maeso M., Millán V., Ortega R., García-Salcedo J.A., Martínez-Abarca F., Soriano M. Changes in the soil bacterial community along a pedogenic gradient // Scientific Reports. 2017, vol. 7, pp. 14593. https://doi.org/10.1038/s41598-017-15133-x
48. Lee K.C., Morgan X.C., Dunfield P.F., Tamas I., McDonald I.R., Stott M.B. Genomic analysis of Chthonomonas calidirosea, the first sequenced isolate of the phylum Armatimonadetes // ISME Journal. 2014, vol. 8, no. 7, pp. 1522–1533. https://doi.org/10.1038/ismej.2013.251
49. Langendries S., Goormachtig S. Paenibacillus polymyxa, a Jack of all trades // Environmental Microbiology. 2021, vol. 23, no. 10, pp. 5659–5669. https://doi.org/10.1111/1462-2920.15450
50. Liu L., Wang Z., Ma D., Zhang M., Fu L. Diversity and Distribution Characteristics of Soil Microbes across Forest–Peatland Ecotones in the Permafrost Regions // International Journal of Environmental Research and Public Health. 2022, vol. 19, pp. 14782. https://doi.org/10.3390/ijerph192214782
51. Abinandan S., Subashchandrabose S.R., Venkateswarlu K., Megharaj M. Soil microalgae and cyanobacteria: the biotechnological potential in the maintenance of soil fertility and health // Critical Reviews in Biotechnology. 2019, vol. 39, no. 8, pp. 981–998. https://doi.org/10.1080/07388551.2019.1654972
52. Nowruzi B., Bouaïcha N., Metcalf J.S., Porzani S.J., Konur O. Plant-cyanobacteria interactions: Beneficial and harmful effects of cyanobacterial bioactive compounds on soil-plant systems and subsequent risk to animal and human health // Phytochemistry. 2021, vol. 192, pp. 112959. https://doi.org/10.1016/j.phytochem.2021.112959
53. Aoyagi T., Inaba T., Aizawa H., Mayumi D., Sakata S., Charfi A., Suh C., Lee J.H., Sato Y., Ogata A., Habe H., Hori T. Unexpected diversity of acetate degraders in anaerobic membrane bioreactor treating organic solid waste revealed by high-sensitivity stable isotope probing // Water Research. 2020, vol. 176, pp. 115750. https://doi.org/10.1016/j.watres.2020.115750
54. Martinez M.A., Woodcroft B.J., Ignacio Espinoza J.C., Zayed A.A., Singleton C.M., Boyd J.A., Li Y.F., Purvine S., Maughan H., Hodgkins S.B., Anderson D., Sederholm M., Temperton B., Bolduc B., Saleska S.R., Tyson G.W., Rich V.I., IsoGenie Project Coordinators, Saleska S.R., Tyson G.W., Rich V.I. Discovery and ecogenomic context of a global Caldiserica-related phylum active in thawing permafrost, Candidatus Cryosericota phylum nov., Ca. Cryosericia class nov., Ca. Cryosericales ord. nov., Ca. Cryosericaceae fam. nov., comprising the four species Cryosericum septentrionale gen. nov. sp. nov., Ca. C. hinesii sp. nov., Ca. C. odellii sp. nov., Ca. C. terrychapinii sp. nov. // Systematic and Applied Microbiology. 2019, vol. 42, no. 1, pp. 54–66. https://doi.org/10.1016/j.syapm.2018.12.003
55. Dyksma S., Gallert C. Candidatus Syntrophosphaera thermopropionivorans: a novel player in syntrophic propionate oxidation during anaerobic digestion // Environmental Microbiology Reports. 2019, vol. 11, no. 4, pp. 558–570. https://doi.org/10.1111/1758-2229.12759
56. Zhou S., Wang G., Han Q., Zhang J., Dang H., Ning H., Gao Y., Sun J. Long-term saline water irrigation affected soil carbon and nitrogen cycling functional profiles in the cotton field // Frontiers in Microbiology. 2024, vol. 15, pp. 1310387. https://doi.org/10.3389/fmicb.2024.1310387
57. Rozanov A.S., Bryanskaya A.V., Malup T.K., Meshcheryakova I.A., Lazareva E.V., Taran O.P., Ivanisenko T.V., Ivanisenko V.A., Zhmodik S.M., Kolchanov N.A., Peltek S.E. Molecular analysis of the benthos microbial community in Zavarzin thermal spring (Uzon Caldera, Kamchatka, Russia) // BMC Genomics. 2014, vol. 12, pp. S12. https://doi.org/10.1186/1471-2164-15-S12-S12
58. Kadnikov V.V., Savvichev A.S., Mardanov A.V., Beletsky A.V., Chupakov A.V., Kokryatskaya N.M., Pimenov N.V., Ravin N.V. Metabolic Diversity and Evolutionary History of the Archaeal Phylum "Candidatus Micrarchaeota" Uncovered from a Freshwater Lake Metagenome // Applied and Environmental Microbiology. 2020, vol. 86, no. 23, pp. e02199-20. https://doi.org/10.1128/AEM.02199-20
59. Golyshina O.V., Bargiela R., Toshchakov S.V., Chernyh N.A., Ramayah S., Korzhenkov A.A., Kublanov I.V., Golyshin P.N. Diversity of “Ca. Micrarchaeota” in Two Distinct Types of Acidic Environments and Their Associations with Thermoplasmatales // Genes. 2019, vol. 10, pp. 461. https://doi.org/10.3390/genes10060461
60. van Vliet D.M., Palakawong Na Ayudthaya S., Diop S., Villanueva L., Stams A.J.M., Sánchez-Andrea I. Anaerobic Degradation of Sulfated Polysaccharides by Two Novel Kiritimatiellales Strains Isolated From Black Sea Sediment // Frontiers in Microbiology. 2019, vol. 10, pp. 253. https://doi.org/10.3389/fmicb.2019.00253
61. Constancias F., Saby N.P., Terrat S., Dequiedt S., Horrigue W., Nowak V., Guillemin J.P., Biju-Duval L., Chemidlin Prévost- Bouré N., Ranjard L. Contrasting spatial patterns and ecological attributes of soil bacterial and archaeal taxa across a landscape // MicrobiologyOpen. 2015, vol. 4, no. 3, pp. 518–531. https://doi.org/10.1002/mbo3.256
62. Hu M., Sardans J., Sun D., Yan R., Wu H., Ni R., Peñuelas J. Microbial diversity and keystone species drive soil nutrient cycling and multifunctionality following mangrove restoration // Environmental Research. 2024, vol. 251, no. 2, pp. 118715. https://doi.org/10.1016/j.envres.2024.118715
63. Sidiki S. Bauxite Mining in the Boké Region (Western Guinea): Method Used and Impacts on Physical Environment // European Journal of Sustainable Development Research. 2019, vol. 3, no. 3, pp. em0087. https://doi.org/10.29333/ejosdr/5735
64. Kolie B., Jun Y., Sunahara G., Camara M. Characterization of the rock blasting process impacts in Lefa gold mine, Republic of Guinea // Environmental Earth Sciences. 2021, vol. 80, pp. 175. https://doi.org/10.1007/s12665-021-09477-x
65. Tabunschik V., Gorbunov R., Bratanov N., Gorbunova T., Mirzoeva N., Voytsekhovskaya V. Fatala River Basin (Republic of Guinea, Africa): Analysis of Current State, Air Pollution, and Anthropogenic Impact Using Geoinformatics Methods and Remote Sensing Data // Sustainability. 2023, vol. 15, pp. 15798. https://doi.org/10.3390/su152215798
66. Sidibé D., Konaté A.A., Kaba O.B., Traoré S. Bauxite Mining Industry in Guinea and the Valorization Prospects of the Resulting Residue for Engineering Purposes // Novel Perspectives of Engineering Research. 2021, vol. 4, pp. 94–110. https://doi.org/10.9734/bpi/nper/v4/3680F
67. Diallo P. Regime Stability, Social Insecurity and Bauxite Mining in Guinea // Developments Since the Mid-Twentieth Century. 1st ed., London, UK, 2019. 142 p. https://doi.org/10.4324/9780429286544
68. Diallo A.K., Conte M.S.M., Kaba O.B., Soumah A., Camara M. Petrological and Statistical Studies of the Limbiko Bauxite Deposit, Republic of Guinea // International Journal of Geosciences. 2023, vol. 14, pp. 351–376. https://doi.org/10.4236/ijg.2023.144020
69. Wilhelm C., Maconachie R. Exploring local content in Guinea's bauxite sector: Obstacles, opportunities and future trajectories // Resources Policy. 2020, vol. 71, pp. 101935. https://doi.org/10.1016/j.resourpol.2020.101935
70. Knierzinger J. The socio-political implications of bauxite mining in Guinea: A commodity chain perspective // Extractive Industries and Society. 2014, vol. 1, pp. 20–27. https://doi.org/10.1016/j.exis.2014.01.005.
71. Daniel R. The metagenomics of soil // Nature Reviews Microbiology. 2005, vol. 3, pp. 470–478. https://doi.org/10.1038/nrmicro1160
72. Чернов Т. И., Холодов В. А., Когут Б. М., Иванов А. Л. Методология микробиологических исследований почвы в рамках проекта “Микробиом России” // Бюл. Почв. ин-та им. В.В. Докучаева. 2017. Т. 87. С. 100–113. https://doi.org/10.19047/0136-1694-2017-87-100-113
73. Jones A., Breuning-Madsen H., Brossard M., Dampha A., Dewitte O., Hallett S., Jones R., Kilasara M., Le Roux P., Micheli E., Montanarella L., Spaargaren O., Tahar G., Thiombiano L., Van Ranst E., Yemefack M., Zougmore R. Soil Atlas of Africa. Luxembourg: Luxembourg, 2013. 176 p.
74. Gorbunova T., Gorbunov R., Camara A.I., Bratanov N., Sow B.B., Pham C.N., Safonova M., Faerman A., Tabunshchik V., Nikiforova A., Lineva N., Diallo A.I.P., Keita I. Heavy Metals in Soils of the Fatala River Basin (Republic of Guinea) // RGSA2024. 2024, vol. 18, pp. e08309. https://doi.org/10.24857/rgsa.v18n9-161
Рецензия
Для цитирования:
Игнатьева Д.А., Горбунова Т.Ю., Кейта И., Алексеев Я.И., Горбунов Р.В., Шварцев А.А., Волков А.А., Монахова Ю.А., Табунщик В.А., Диаките С., Балде А.М., Соу М.Д., Диалло А.И. Бактериальный состав почв бассейна реки Фатала (Гвинейская Республика) в сухой сезон и его взаимосвязь с экологическими характеристиками ландшафтов. Юг России: экология, развитие. 2024;19(4):110-130. https://doi.org/10.18470/1992-1098-2024-4-9
For citation:
Ignateva D.A., Gorbunova T.Yu., Keita I., Alekseev Ya.I., Gorbunov R.V., Shvartsev A.A., Volkov A.A., Monakhova Yu.A., Tabunshchik V.A., Diakité S., Baldé A.M., Sow M.D., Diallo A.I. Bacterial Composition of Soils in the Fatala River Basin (Guinea) during the Dry Season: An Examination of its Relationship with Ecological Landscape Characteristics. South of Russia: ecology, development. 2024;19(4):110-130. https://doi.org/10.18470/1992-1098-2024-4-9