Genetic mutations associated with severe respiratory diseases
https://doi.org/10.18470/1992-1098-2024-4-3
Abstract
Aim. To analyze existing data on the impact of mutations in the human genome on the pathogenesis of respiratory viral infections and to discuss their relevance to clinical practice. The primary objectives include describing the mechanisms of genetic mutations, reviewing examples of genes and mutations that affect susceptibility and disease severity and evaluating the prospects for genetic testing and personalized medicine.
Research on genetic factors influencing viral respiratory infections demonstrates the significant impact of mutations on disease progression and outcomes. For instance, the IFITM3 gene, which plays a crucial role in limiting influenza virus replication, along with its rs12252‐C polymorphism, is linked to severe cases of influenza. Similarly, mutations in the TLR7 gene are associated with severe manifestations of COVID‐19, particularly in males. These findings underscore the importance of genetic testing to identify individuals at heightened risk for severe infections and emphasize the potential of personalized medicine to enhance patient outcomes. Additionally, it is essential to consider the interplay between genetic factors and environmental as well as social determinants of health.
This review examines the genetic factors that influence susceptibility to viral respiratory infections and the severity of disease progression. It demonstrates that genetic mutations can significantly affect the pathogenesis and course of these infections. The importance of integrating genetic data into clinical practice to enhance the efficiency of diagnosis, prognosis and treatment is emphasized.
Keywords
About the Authors
A. D. MoshkinRussian Federation
Alexey D. Moshkin, Junior Researcher, Laboratory of Virus Genomics and Evolution
2 Timakova St, Novosibirsk, 630060. Tel. +7 (906) 908 82‐45
K. A. Stolbunova
Russian Federation
Kristina A. Stolbunova
Novosibirsk
A. D. Matsvay
Russian Federation
Alina D. Matsvay
Moscow
O. V. Ohlopkova
Russian Federation
Olesia V. Ohlopkova
Novosibirsk
References
1. Morris D.R., Qu Y., Thomason K.S., de Mello A.H., Preble R., Menachery V.D., Casola A., Garofalo R.P. The impact of RSV/SARS-CoV-2 co-infection on clinical disease and viral replication: insights from a BALB/c mouse model. bioRxiv, 2023. Available at: http://biorxiv.org/content/early/2023/05/24/2023.05.24.542043.abstract (accessed: 20.08.2024). https://doi.org/10.1101/2023.05.24.542043
2. Papagiannis D., Perlepe G., Tendolouri T., Karakitsiou P., Damagka G., Kalaitzi A., Alevra S., Malli F., Gourgoulianis K.I. Proportion of Respiratory Syncytial Virus, SARS-CoV-2, Influenza A/B, and Adenovirus Cases via Rapid Tests in the Community during Winter 2023-A Cross Sectional Study. Diseases, 2023, vol. 11, iss. 3, p. 122. https://doi.org/10.3390/diseases11030122
3. Reed K.D. Respiratory Tract Infections: A Clinical Approach. Molecular Medical Microbiology, 2015, pp. 1499–1506. https://doi.org/10.1016/B978-0-12-397169-2.00084-6
4. Waterer G., Wunderink R. Respiratory infections: a current and future threat. Respirology, 2009, vol. 14, iss. 5, pp. 651–655. https://doi.org/10.1111/j.1440-1843.2009.01554.x
5. Quiros-Roldan E., Sottini A., Natali P.G., Imberti L. The Impact of Immune System Aging on Infectious Diseases. Microorganisms, 2024, vol. 12, iss. 4, p. 775. https://doi.org/10.3390/microorganisms12040775
6. Lacoma A., Mateo L., Blanco I., Méndez M.J., Rodrigo C., Latorre I., Villar-Hernandez R., Domínguez J., Prat C. Impact of Host Genetics and Biological Response Modifiers on Respiratory Tract. Frontiers in Immunology, 2019, vol. 10, article id: 1013. https://doi.org/10.3389/fimmu.2019.01013
7. Pérez-Rubio G., Ponce-Gallegos M.A., Domínguez- Mazzocco B.A., Ponce-Gallegos J., García-Ramírez R.A., Falfán-Valencia R. Role of the Host Genetic Susceptibility to 2009 Pandemic Influenza A H1N1. Viruses, 2021, vol. 13, p. 344. https://doi.org/10.3390/v13020344
8. Mettelman R.C., Thomas P.G. Human Susceptibility to Influenza Infection and Severe Disease. Cold Spring Harbor Perspectives in Medicine, 2021, vol. 11, iss. 5. Available at: https://perspectivesinmedicine.cshlp.org/content/11/5/a038711 (accessed: 20.08.2024) https://doi.org/10.1101/cshperspect.a038711
9. Angulo-Aguado M., Carrillo-Martinez J.C., Contreras-Bravo N.C., Morel A., Parra-Abaunza K., Usaquén W., Fonseca- Mendoza D.J., Ortega-Recalde O. Next-generation sequencing of host genetics risk factors associated with COVID-19 severity and long-COVID in Colombian population. Scientific Reports, 2024, vol. 14, iss. 1, article id: 8497. https://doi.org/10.1038/s41598-024-57982-3
10. Boos J., van der Made C.I., Ramakrishnan G., Coughlan E., Asselta R., Lösche B.S., Valenti L.V.C., de Cid R., Bujanda L., Julià A., Pairo-Castineira E., Baillie J.K., May S., Zametica B., Heggemann J., Albillos A., Banales J.M., Barretina J., Blay N., Bonfanti P., Ludwig K.U. Stratified analyses refine association between TLR7 rare variants and severe COVID-19. HGG Advances, 2024, vol. 5, iss. 4, pp. 2666–2477. https://doi.org/10.1016/j.xhgg.2024.100323
11. Britannica, The Editors of Encyclopedia. Point mutation. Encyclopedia Britannica, 2014. Available at: https://www.britannica.com/science/point-mutation (accessed: 20.08.2024)
12. Nesta A.V., Tafur D., Beck C.R. Hotspots of Human Mutation. Trends in Genetics, 2021, vol. 37, iss. 8, pp. 717–729. https://doi.org/10.1016/j.tig.2020.10.003
13. Govers C., Calder P.C., Savelkoul H.F.J., Albers R., van Neerven R.J.J. Ingestion, Immunity, and Infection: Nutrition and Viral Respiratory Tract Infections. Frontiers in Immunology, 2022, vol. 13. Available at: https://www.frontiersin.org/no.s/10.3389/fimmu.2022.841532/full (accessed: 20.08.2024). https://doi.org/10.3389/fimmu.2022.841532
14. Mogensen T.H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clinical Microbiology Reviews, 2009, vol. 22, iss. 2, pp. 240–273. https://doi.org/10.1128/CMR.00046-08
15. Mangino M., Roederer M., Beddall M.H., Nestle F.O., Spector T.D. Innate and adaptive immune traits are differentially affected by genetic and environmental factors. Nature Communications, 2014, vol. 8, article id: 13850. https://doi.org/10.1038/ncomms13850
16. Aristizábal B., González Á. Innate immune system. From Bench to Bedside. El Rosario University Press, 2013, vol. 2. Available at: https://www.ncbi.nlm.nih.gov/books/NBK459455/ (accessed: 20.07.2024)
17. Janeway C.A. Jr, Travers P., Walport M. Immunobiology: The Immune System in Health and Disease. Garland Science, 2001, vol. 5. Available at: https://www.ncbi.nlm.nih.gov/books/NBK10757/ (accessed: 20.07.2024)
18. Prasad S., Lownik E., Ricco J. Viral Infections of the Respiratory Tract. Family Medicine, 2016, pp. 507–517. https://doi.org/10.1007/978-3-319-04414-9_41
19. Ilyicheva T.N., Netesov S.V., Gureyev V.N. COVID-19, Influenza, and Other Acute Respiratory Viral Infections: Etiology, Immunopathogenesis, Diagnosis, and Treatment. Part I. COVID-19 and Influenza. Molecular Genetics, Microbiology and Virology, 2022, vol. 37, iss. 1, pp. 1–9. https://doi.org/10.3103/S0891416822010025
20. Eugenia Ma., Patricia D., Horacio L., Delgado R., Cabello- Gutierrez C. Pathogenesis of Viral Respiratory Infection. Respiratory Disease and Infection, 2013, vol. 1. https://doi.org/10.5772/54287
21. Mueller S.N., Rouse B.T. Immune responses to viruses. Clinical Immunology, 2008, pp. 421–431. https://doi.org/10.1016/B978-0-323-04404-2.10027-2
22. Oladejo B.O., Adeboboye C.F., Adebolu T.T. Understanding the genetic determinant of severity in viral diseases: a case of SARS-CoV-2 infection. The Egyptian Journal of Medical Human Genetics, 2020, vol. 21, iss. 1, p. 77. https://doi.org/10.1186/s43042-020-00122-z
23. Uffelmann E., Huang Q.Q., Munung N.S., de Vries J., Okada Y., Martin A.R., Martin H.C., Lappalainen T., Posthuma D. Genome-wide association studies. Nature Reviews Methods Primers, 2021, vol. 1, iss. 1, p. 59. https://doi.org/10.1038/s43586-021-00056-9
24. Zhang Y.H., Zhao Y., Li N., Peng Y.C., Giannoulatou E., Jin R.H., Yan H.P., Wu H., Liu J.H., Liu N., Wang D.Y., Shu Y.L., Ho L.P., Kellam P., McMichael A., Dong T. Interferon-induced transmembrane protein-3 genetic variant rs12252-C is associated with severe influenza in Chinese individuals. Nature Communications, 2013, vol. 4, iss. 1, p. 1418. https://doi.org/10.1038/ncomms2433
25. Nguyen A., David J.K., Maden S.K. Human Leukocyte Antigen Susceptibility Map for Severe Acute Respiratory Syndrome Coronavirus 2. Journal of Virology, 2020, vol. 94, iss. 13. Available at: https://journals.asm.org/doi/10.1128/jvi.00510-20 (accessed: 20.07.2024). https://doi.org/10.1128/JVI.00510-20
26. Jiang L.Q., Xia T., Hu Y.H., Sun M.S., Yan S., Lei C.Q., Shu H.B., Guo J.H., Liu Y. IFITM3 inhibits virus-triggered induction of type I interferon by mediating autophagosome-dependent degradation of IRF3. Cellular & Molecular Immunology, 2018, vol. 15, iss. 9, pp. 858–867. https://doi.org/10.1038/cmi.2017.15
27. Cuesta-Llavona E., Albaiceta G.M., García-Clemente M., Duarte-Herrera I.D., Amado-Rodríguez L., Hermida-Valverde T., Enríquez-Rodriguez A.I., Hernández-González C., Melón S., Alvarez-Argüelles M.E., Boga J.A., Rojo-Alba S., Vázquez-Coto D., Gómez J., Coto E. Association between the interferoninduced transmembrane protein 3 gene (IFITM3) rs34481144 / rs12252 haplotypes and COVID-19. Current Research in Virological Science, 2021, vol. 2. Available at: https://www.sciencedirect.com/science/no./pii/S2666478X21000106 (accessed: 20.07.2024). https://doi.org/10.1016/j.crviro.2021.100016
28. Chen Y., Lin J., Zhao Y., Ma X., Yi H. Toll-like receptor 3 (TLR3) regulation mechanisms and roles in antiviral innate immune responses. J Zhejiang Univ Sci B, 2021, vol. 22, iss. 8, pp. 609–632. https://doi.org/10.1631/jzus.B2000808
29. Croci S., Venneri M.A., Mantovani S., Fallerini C., Benetti E., Picchiotti N., Campolo F., Imperatore F., Palmieri M., Daga S., Gabbi C., Montagnani F., Beligni G., Farias T.D.J., Carriero M.L., Di Sarno L., Alaverdian D., Aslaksen S., Cubellis M.V., Spiga O., Meloni I. The polymorphism L412F in TLR3 inhibits autophagy and is a marker of severe COVID-19 in males. Autophagy, 2022, vol. 18, iss. 7, pp. 1662–1672. https://doi.org/10.1080/15548627.2021.1995152
30. Mertowska P., Smolak K., Mertowski S., Grywalska E. Immunomodulatory Role of Interferons in Viral and Bacterial Infections. International Journal of Molecular Sciences, 2023, vol. 24, iss. 12. Available at: https://www.mdpi.com/1422-0067/24/12/10115 (accessed: 26.07.2024). https://doi.org/10.3390/ijms241210115
31. Janeway C.A. Jr, Travers P., Walport M. The major histocompatibility complex and its functions. Immunobiology: The Immune System in Health and Disease, 5th edition. New York: Garland Science, 2001, p. 199.
32. Lin F., Lin X., Fu B., Xiong Y., Zaky M.Y., Wu H. Functional studies of HLA and its role in SARS-CoV-2: Stimulating T cell response and vaccine development. Life Sciences, 2023, vol. 315, article id: 121374. https://doi.org/10.1016/j.lfs.2023.121374
33. Crux N.B., Elahi S. Human Leukocyte Antigen (HLA) and Immune Regulation: How Do Classical and Non-Classical HLA Alleles Modulate Immune Response to Human Immunodeficiency Virus and Hepatitis C Virus Infections? Frontiers in Immunology, 2017, vol. 8, p. 832. https://doi.org/10.3389/fimmu.2017.00832
34. Kristiansen H., Scherer C.A., McVean M., Iadonato S.P., Vends S., Thavachelvam K., Steffensen T.B., Horan K.A., Kuri T., Weber F., Paludan S.R., Hartmann R. Extracellular 2'-5' oligoadenylate synthetase stimulates RNase L-independent antiviral activity: a novel mechanism of virus-induced innate immunity. Journal of Virology, 2010, vol. 84, iss. 22, pp. 11898–11904. https://doi.org/10.1128/JVI.01003-10
35. Sánchez-González M.T., Cienfuegos-Jiménez O., Álvarez- Cuevas S., Pérez-Maya A.A., Borrego-Soto G., Marino-Martínez I.A. Prevalence of the SNP rs10774671 of the OAS1 gene in Mexico as a possible predisposing factor for RNA virus disease. International Journal of Molecular Epidemiology and Genetics, 2021, vol. 12, iss. 3, pp. 52–60.
36. Antony J.S., Ojurongbe O., van Tong H., Ouf E.A., Engleitner T., Akindele A.A., Sina-Agbaje O.R., Adeyeba A.O., Kremsner P.G., Velavan T.P. Mannose-binding lectin and susceptibility to schistosomiasis. The Journal of Infectious Diseases, 2013, vol. 207, iss. 11, pp. 1675–1683. https://doi.org/10.1093/infdis/jit081
37. Jahan I., Hayat S., Khalid M.M., Ahammad R.U., Asad A., Islam B., Mohammad Q.D., Jacobs B.C., Islam Z. Association of mannose-binding lectin 2 gene polymorphisms with Guillain-Barré syndrome. Scientific Reports, 2022, vol. 12, article id: 5791. https://doi.org/10.1038/s41598-022-09621-y
38. Kaler J., Hussain A., Patel K., Hernandez T., Ray S. Respiratory Syncytial Virus: A Comprehensive Review of Transmission, Pathophysiology, and Manifestation. Cureus, 2023, vol. 15, iss. 3, article id: 36342. https://doi.org/10.7759/cureus.36342
39. Xuan Y., Wang L.N., Li W., Zi H.R., Guo Y., Yan W.J., Chen X.B., Wei P.M. IFITM3 rs12252 T>C polymorphism is associated with the risk of severe influenza: a meta-analysis. Epidemiology and Infection, 2015, vol. 143, iss. 1, pp. 2975–2984. https://doi.org/10.1017/S0950268815000278
40. Chen Q., Langenbach S., Li M., Xia Y.C., Gao X., Gartner M.J., Pharo E.A., Williams S.M., Todd S., Clarke N., Ranganathan S., Baker M.L., Subbarao K., Stewart A.G. ACE2 Expression in Organotypic Human Airway Epithelial Cultures and Airway Biopsies. Frontiers in Pharmacology, 2022, vol. 13, article id: 813087. https://doi.org/10.3389/fphar.2022.813087
41. Posadas-Sánchez R., Fragoso J.M., Sánchez-Muñoz F., Rojas-Velasco G., Ramírez-Bello J., López-Reyes A., Martínez-Gómez L.E., Sierra-Fernández C., Rodríguez-Reyna T., Regino-Zamarripa N.E., Ramírez-Martínez G., Zuñiga-Ramos J., Vargas-Alarcón G. Association of the Transmembrane Serine Protease-2 (TMPRSS2) Polymorphisms with COVID-19. Viruses, 2022, vol. 14, iss. 9, article id: 1976. https://doi.org/10.3390/v14091976
42. Pandey R.K., Srivastava A., Singh P.P., Chaubey G. Genetic association of TMPRSS2 rs2070788 polymorphism with COVID-19 case fatality rate among Indian populations. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 2022, vol. 98, article id: 105206. https://doi.org/10.1016/j.meegid.2022.105206
43. Huffman J.E., Butler-Laporte G., Khan A., Pairo-Castineira E., Drivas T.G., Peloso G.M., Nakanishi T., Ganna A., Verma A., Baillie J.K., Kiryluk K., Richards J.B., Zeberg H. Multiancestry fine mapping implicates OAS1 splicing in risk of severe COVID-19. Nature Genetics, 2022, vol. 54, pp. 125–127. https://doi.org/10.1038/s41588-021-00996-8
44. Eisen D.P. Mannose-binding lectin deficiency and respiratory tract infection. Journal of Innate Immunity, 2010, vol. 2, iss. 2, pp. 114–122. https://doi.org/10.1159/000228159
45. Falahi S., Zamanian M.H., Feizollahi P., Rezaiemanesh A., Salari F., Mahmoudi Z., Gorgin Karaji A. Evaluation of the relationship between IL-6 gene single nucleotide polymorphisms and the severity of COVID-19 in an Iranian population. Cytokine, 2022, vol. 154, article id: 155889. https://doi.org/10.1016/j.cyto.2022.155889
46. Li M., Xu Y., Pu K., Fan J., Cheng Z., Chen H., Zhou L. Genetic polymorphisms of chemokine (C-X-C motif) ligand 10 gene associated with hepatitis B virus infection in a Chinese Han population. International Immunopharmacology, 2021, vol. 98, article id: 107888. https://doi.org/10.1016/j.intimp.2021.107888
47. Ni J., Wang D., Wang S. The CCR5-Delta32 Genetic Polymorphism and HIV-1 Infection Susceptibility: a Metaanalysis. Open Medicine, 2018, vol. 13, pp. 467–474. https://doi.org/10.1515/med-2018-0062
48. Chen F., Chen Y., Ke Q., Wang Y., Gong Z., Chen X., Cai Y., Li S., Sun Y., Peng X., Ji Y., Zhang T., Wu W., Cui L., Wang Y. ApoE4 associated with severe COVID-19 outcomes via downregulation of ACE2 and imbalanced RAS pathway. Journal of Translational Medicine, 2023, vol. 21, iss. 1, p. 103. https://doi.org/10.1186/s12967-023-03945-7
49. Jocher G., Grass V., Tschirner S.K., Riepler L., Breimann S., Kaya T., Oelsner M., Hamad M.S., Hofmann L.I., Blobel C.P., Schmidt-Weber C.B., Gokce O., Jakwerth C.A., Trimpert J., Kimpel J., Pichlmair A., Lichtenthaler S.F. ADAM10 and ADAM17 promote SARS-CoV-2 cell entry and spike proteinmediated lung cell fusion. EMBO Reports, 2022, vol. 23, iss. 6, article id: e54305. https://doi.org/10.15252/embr.202154305
50. Bochkov Y.A., Watters K., Ashraf S., Griggs T.F., Devries M.K., Jackson D.J., Palmenberg A.C., Gern J.E. Cadherinrelated family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication. Proceedings of the National Academy of Sciences of the United States of America, 2015, vol. 112, iss. 17, pp. 5485–5490. https://doi.org/10.1073/pnas.1421178112
51. Mesa F., Lanza E., García L., Marfil-Alvarez R., Magan- Fernandez A. Polymorphism IL-1RN rs419598 reduces the susceptibility to generalized periodontitis in a population of European descent. PLoS One, 2017, vol. 12, iss. 10, article id: e0186366. https://doi.org/10.1371/journal.pone.0186366
52. Braga M., Lara-Armi F.F., Neves J.S.F., Rocha-Loures M.A., Terron-Monich M.S., Bahls-Pinto L.D., de Lima Neto Q.A., Zacarias J.M.V., Sell A.M., Visentainer J.E.L. Influence of IL10 (rs1800896) Polymorphism and TNF-α, IL-10, IL-17A, and IL-17F Serum Levels in Ankylosing Spondylitis. Frontiers in Immunology, 2021, vol. 12, article id: 653611. https://doi.org/10.3389/fimmu.2021.653611
53. Wang X., Stelzer-Braid S., Scotch M., Rawlinson W.D. Detection of respiratory viruses directly from clinical samples using next-generation sequencing: A literature review of recent advances and potential for routine clinical use. Reviews in Medical Virology, 2022, vol. 32, iss. 5, article id: e2375. https://doi.org/10.1002/rmv.2375
54. Adli A., Rahimi M., Khodaie R., Hashemzaei N., Hosseini S.M. Role of genetic variants and host polymorphisms on COVID-19: From viral entrance mechanisms to immunological reactions. Journal of Medical Virology, 2022, vol. 94, iss. 5, pp. 1846–1865. https://doi.org/10.1002/jmv.27615
55. Cappadona C., Rimoldi V., Paraboschi E.M., Asselta R. Genetic susceptibility to severe COVID-19. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 2023, vol. 110, article id: 105426. https://doi.org/10.1016/j.meegid.2023.105426
56. Bochkov Y.A., Gern J.E. Rhinoviruses and Their Receptors: Implications for Allergic Disease. Current Allergy and Asthma Reports, 2016, vol. 16, iss. 4, p. 30. https://doi.org/10.1007/s11882-016-0608-7
57. Bønnelykke K., Coleman A.T., Evans M.D., Thorsen J., Waage J., Vissing N.H., Carlsson C.J., Stokholm J., Chawes B.L., Jessen L.E., Fischer T.K., Bochkov Y.A., Ober C., Lemanske R.F. Jr., Jackson D.J., Gern J.E., Bisgaard H. Cadherin-related Family Member 3 Genetics and Rhinovirus C Respiratory Illnesses. American Journal of Respiratory and Critical Care Medicine, 2018, vol. 197, iss. 5, pp. 589–594. https://doi.org/10.1164/rccm.201705-1021OC
58. McClain M.T., Constantine F.J., Nicholson B.P., Nichols M., Burke T.W., Henao R., Jones D.C., Hudson L.L., Jaggers L.B., Veldman T., Mazur A., Park L.P., Suchindran S., Tsalik E.L., Ginsburg G.S., Woods C.W. A blood-based host gene expression assay for early detection of respiratory viral infection: an index-cluster prospective cohort study. The Lancet. Infectious Diseases, 2021, vol. 21, iss. 3, pp. 396–404. https://doi.org/10.1016/S1473-3099(20)30486-2
59. Kwok A.J., Mentzer A., Knight J.C. Host genetics and infectious disease: new tools, insights and translational opportunities. Nature Reviews Genetics, 2021, vol. 22, pp. 137–153. https://doi.org/10.1038/s41576-020-00297-6
60. Zhang Y., Makvandi-Nejad S., Qin L., Zhao Y., Zhang T., Wang L., Repapi E., Taylor S., McMichael A., Li N., Dong T., Wu H. Interferon-induced transmembrane protein-3 rs12252-C is associated with rapid progression of acute HIV-1 infection in Chinese MSM cohort. AIDS, 2015, vol. 29, iss. 8, pp. 889–894. https://doi.org/10.1097/QAD.0000000000000632
61. Solanich X., Vargas-Parra G., van der Made C.I., Simons A., Schuurs-Hoeijmakers J., Antolí A., Del Valle J., Rocamora-Blanch G., Setién F., Esteller M., van Reijmersdal S.V., Riera-Mestre A., Sabater-Riera J., Capellá G., van de Veerdonk F.L., van der Hoven B., Corbella X., Hoischen A., Lázaro C. Genetic Screening for TLR7 Variants in Young and Previously Healthy Men with Severe COVID-19. Frontiers in Immunology, 2021, vol. 12, article id: 719115. https://doi.org/10.3389/fimmu.2021.719115
62. Goetz L.H., Schork N.J. Personalized medicine: motivation, challenges, and progress. Fertiity and Sterility, 2018, vol. 109, iss. 6, pp. 952–963. https://doi.org/10.1016/j.fertnstert.2018.05.006
63. Nag S., Mandal S., Mukherjee O., Mukherjee S., Kundu R. DPP-4 Inhibitors as a savior for COVID-19 patients with diabetes. Future Virology, 2022, vol. 18, iss. 5, pp. 321–333. https://doi.org/10.2217/fvl-2022-0112
64. Hussen B.M., Najmadden Z.B., Abdullah S.R., Rasul M.F., Mustafa S.A., Ghafouri-Fard S., Taheri M. CRISPR/Cas9 gene editing: a novel strategy for fighting drug resistance in respiratory disorders. Cell Communication and Signaling: CCS, 2024, vol. 22, iss. 1, p. 329. https://doi.org/10.1186/s12964-024-01713-8
Review
For citations:
Moshkin A.D., Stolbunova K.A., Matsvay A.D., Ohlopkova O.V. Genetic mutations associated with severe respiratory diseases. South of Russia: ecology, development. 2024;19(4):28-40. (In Russ.) https://doi.org/10.18470/1992-1098-2024-4-3