Preview

Юг России: экология, развитие

Расширенный поиск

Генетические мутации, ассоциированные с тяжелым течением респираторных заболеваний

https://doi.org/10.18470/1992-1098-2024-4-3

Аннотация

Цель: выполнить анализ существующих данных о влиянии мутаций в геноме человека на патогенез респираторных вирусных инфекций и обсуждение их значимости для клинической практики. Основные задачи включают описание механизмов генетических мутаций, рассмотрение примеров генов и мутаций, влияющих на восприимчивость и тяжесть заболеваний, а также оценку перспектив генетического тестирования и персонализированной медицины.
Исследование генетических факторов, влияющих на вирусные респираторные инфекции, показывает значительное влияние мутаций на течение и исход заболеваний. Например, ген IFITM3, важный для ограничения репликации вируса гриппа, и его полиморфизм rs12252‐C ассоциируются с тяжелыми формами гриппа. Аналогично, мутации в TLR7 связаны с тяжелыми формами COVID‐19, особенно у мужчин.
Такие данные подтверждают важность генетического тестирования для выявления лиц с повышенным риском тяжелых инфекций и подчеркивают потенциал персонализированной медицины в улучшении исходов лечения. Важно также учитывать взаимодействие генетических факторов с экологическими и социальными детерминантами здоровья.
В обзоре рассмотрены генетические факторы, влияющие на восприимчивость к вирусным респираторным инфекциям и тяжесть течения заболеваний. Показано, что генетические мутации могут существенно влиять на патогенез и течение инфекций. Подчеркнута важность интеграции генетических данных в клиническую практику для повышения эффективности диагностики, прогнозирования и лечения.

Об авторах

А. Д. Мошкин
НИИ вирусологии Федерального исследовательского центра фундаментальной и трансляционной медицины (ФИЦ ФТМ)
Россия

Алексей Д. Мошкин, младший научный сотрудник, лаборатория геномики и эволюции Вирусов

630060 Россия, г. Новосибирск, ул. Тимакова 2. Тел. +7 (906) 908 82‐45



К. А. Столбунова
НИИ вирусологии Федерального исследовательского центра фундаментальной и трансляционной медицины (ФИЦ ФТМ)
Россия

Кристина А. Столбунова

Новосибирск



А. Д. Мацвай
Центр стратегического планирования и управления медико‐биологическими рисками здоровью Федерального медико‐биологического агентства (ФГБУ «ЦСП» ФМБА России)
Россия

Алина Д.  Мацвай

Москва



О. В. Охлопкова
НИИ вирусологии Федерального исследовательского центра фундаментальной и трансляционной медицины (ФИЦ ФТМ)
Россия

Олеся В. Охлопкова

Новосибирск



Список литературы

1. Morris D.R., Qu Y., Thomason K.S., de Mello A.H., Preble R., Menachery V.D., Casola A., Garofalo R.P. The impact of RSV/SARS-CoV-2 co-infection on clinical disease and viral replication: insights from a BALB/c mouse model. Preprint // bioRxiv. 2023. URL: http://biorxiv.org/content/early/2023/05/24/2023.05.24.542043.abstract (дата обращения 20.08 2024). https://doi.org/10.1101/2023.05.24.542043

2. Papagiannis D., Perlepe G., Tendolouri T., Karakitsiou P., Damagka G., Kalaitzi A., Alevra S., Malli F., Gourgoulianis K.I. Proportion of Respiratory Syncytial Virus, SARS-CoV-2, Influenza A/B, and Adenovirus Cases via Rapid Tests in the Community during Winter 2023-A Cross Sectional Study // Diseases. 2023. V. 11. Iss 3. P. 122. https://doi.org/10.3390/diseases11030122

3. Reed K.D. Respiratory Tract Infections: A Clinical Approach // Molecular Medical Microbiology. 2015. P. 1499–1506. https://doi.org/10.1016/B978-0-12-397169-2.00084-6

4. Waterer G., Wunderink R. Respiratory infections: a current and future threat // Respirology. 2009. V. 14(5). P. 651–655. https://doi.org/10.1111/j.1440-1843.2009.01554.x

5. Quiros-Roldan E., Sottini A., Natali P.G., Imberti L., The Impact of Immune System Aging on Infectious Diseases // Microorganisms. 2024. V. 12. Iss. 4. P. 775. https://doi.org/10.3390/microorganisms12040775

6. Lacoma A., Mateo L, Blanco I., Méndez M.J., Rodrigo C., Latorre I., Villar-Hernandez R., Domínguez J., Prat C. Impact of Host Genetics and Biological Response Modifiers on Respiratory Tract // Infections. Frontiers in Immunology. V. 10. Article Id: 1013. https://doi.org/10.3389/fimmu.2019.01013

7. Pérez-Rubio G., Ponce-Gallegos M.A., Domínguez-Mazzocco B.A., Ponce-Gallegos J., García-Ramírez R.A., Falfán-Valencia R. Role of the Host Genetic Susceptibility to 2009 Pandemic Influenza A H1N1 // Viruses. 2021. V. 13. P. 344. https://doi.org/10.3390/v13020344

8. Mettelman R.C., Thomas P.G. Human Susceptibility to Influenza Infection and Severe Disease // Cold Spring Harbor perspectives in medicine. 2021. V. 11. Iss. 5. URL: https://perspectivesinmedicine.cshlp.org/content/11/5/a038711 (дата обращения 20.08.2024) https://doi.org/10.1101/cshperspect.a038711

9. Angulo-Aguado M., Carrillo-Martinez J.C., Contreras- Bravo N.C., Morel A., Parra-Abaunza K., Usaquén W., Fonseca-Mendoza D.J., Ortega-Recalde O. Next-generation sequencing of host genetics risk factors associated with COVID-19 severity and long-COVID in Colombian population // Scientific reports. 2024. V. 14. Iss. 1. Article Id: 8497. https://doi.org/10.1038/s41598-024-57982-3

10. Boos J., van der Made C.I., Ramakrishnan G., Coughlan E., Asselta R., Lösche, B.S., Valenti L.V.C., de Cid R., Bujanda L., Julià A., Pairo-Castineira E., Baillie J.K., May S., Zametica B., Heggemann J., Albillos A., Banales J. M., Barretina J., Blay N., Bonfanti P., Ludwig K.U. Stratified analyses refine association between TLR7 rare variants and severe COVID-19 // HGG Advances. 2024. V. 5. Iss. 4. P. 2666–2477. https://doi.org/10.1016/j.xhgg.2024.100323

11. Britannica, The Editors of Encyclopedia. Point mutation. Encyclopedia Britannica, 2014, https://www.britannica.com/science/point-mutation. (дата обращения: 20.08.2024)

12. Nesta A.V., Tafur D., Beck C.R. Hotspots of Human Mutation // Trends Genet. 2021. V. 37. Iss. 8. P. 717–729. https://doi.org/10.1016/j.tig.2020.10.003

13. Govers C., Calder P.C., Savelkoul H.F.J., Albers R., van Neerven R.J.J. Ingestion, Immunity, and Infection: Nutrition and Viral Respiratory Tract Infections // Frontiers in immunology. 2022. V. 13. URL: https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2022.841532 (дата обращения: 20.08.2024). https://doi.org/10.3389/fimmu.2022.841532

14. Mogensen T.H. Pathogen recognition and inflammatory signaling in innate immune defenses // Clinical microbiology reviews. V. 22. Iss. 2. P. 240–273. https://doi.org/10.1128/CMR.00046-08

15. Mangino M., Roederer M., Beddall M.H., Nestle F.O., Spector T.D. Innate and adaptive immune traits are differentially affected by genetic and environmental factors // Nature communications. 2014. V. 8. Iss. 1. Article Id: 13850. https://doi.org/10.1038/ncomms13850

16. Aristizábal B., González Á. Innate immune system. From Bench to Bedside. El Rosario University Press. 2013. V. 2. URL: https://www.ncbi.nlm.nih.gov/books/NBK459455/ (дата обращения 20.07.2024)

17. Janeway C.A. Jr, Travers P., Walport M. Immunobiology: The Immune System in Health and Disease. V 5. 2001. URL: https://www.ncbi.nlm.nih.gov/books/NBK10757/ (дата обращения: 20.07.2024)

18. Prasad S., Lownik E., Ricco J. Viral Infections of the Respiratory Tract // Family Medicine. 2016. P 507–517. https://doi.org/10.1007/978-3-319-04414-9_41

19. Ilyicheva T.N., Netesov S.V., Gureyev V.N. COVID-19, Influenza, and Other Acute Respiratory Viral Infections: Etiology, Immunopathogenesis, Diagnosis, and Treatment. Part I. COVID-19 and Influenza // Molecular genetics, microbiology and virology. V. 37. Iss. 1. P. 1–9. https://doi.org/10.3103/S0891416822010025

20. Eugenia Ma., Patricia D., Horacio L., Delgado. R., Cabello-Gutiérrez C. Pathogenesis of Viral Respiratory Infection // Respiratory Disease and Infection. 2013. V. 1. https://doi.org/10.5772/54287

21. Mueller S.N., Rouse B.T. Immune responses to viruses // Clinical Immunology. 2008. P. 421–431. https://doi.org/10.1016/B978-0-323-04404-2.10027-2

22. Oladejo B.O., Adeboboye C.F., Adebolu T.T. Understanding the genetic determinant of severity in viral diseases: a case of SARS-Cov-2 infection // The Egyptian journal of medical human genetics. 2020. V. 21. Iss. 1. P. 77. https://doi.org/10.1186/s43042-020-00122-z

23. Uffelmann E., Huang Q.Q., Munung N.S., de Vries J., Okada Y., Martin A.R., Martin H.C. Lappalainen T., Posthuma D. Genome-wide association studies // Nature Reviews Methods Primers. V. 1. Iss. 1. P. 59. https://doi.org/10.1038/s43586-021-00056-9

24. Zhang Y.H., Zhao Y., Li N., Peng Y.C., Giannoulatou E., Jin R.H., Yan H.P., Wu H., Liu J.H., Liu N., Wang D.Y., Shu Y.L., Ho L.P., Kellam P., McMichael A., Dong T. Interferon-induced transmembrane protein-3 genetic variant rs12252-C is associated with severe influenza in Chinese individuals // Nature communications. 2013. V. 4. Iss. 1. P. 1418. https://doi.org/10.1038/ncomms2433

25. Nguyen A., David J.K., Maden S.K. Human Leukocyte Antigen Susceptibility Map for Severe Acute Respiratory Syndrome Coronavirus 2 // Journal of virology. 2020. V. 94. Iss. 13. URL: https://journals.asm.org/doi/10.1128/jvi.00510-20 (дата обращения 20.07.2024) https://doi.org/10.1128/JVI.00510-20

26. Jiang L.Q., Xia T., Hu Y.H., Sun M.S., Yan S., Lei C.Q., Shu H.B., Guo J.H., Liu Y. IFITM3 inhibits virus-triggered induction of type I interferon by mediating autophagosome-dependent degradation of IRF3 // Cellular & molecular immunology. 2018. V. 15. Iss. 9. P. 858–867. https://doi.org/10.1038/cmi.2017.15

27. Cuesta-Llavona E., Albaiceta G.M., García-Clemente M., Duarte-Herrera I.D., Amado-Rodríguez L., Hermida-Valverde T., Enríquez-Rodriguez A.I., Hernández-González C., Melón S., Alvarez-Argüelles M.E., Boga J.A., Rojo-Alba S., Vázquez-Coto D., Gómez J., Coto E. Association between the interferoninduced transmembrane protein 3 gene (IFITM3) rs34481144 / rs12252 haplotypes and COVID-19 // Current research in virological science. 2021. V. 2. URL: https://www.sciencedirect.com/science/article/pii/S2666478X21000106 (дата обращения: 20.07.2024). https://doi.org/10.1016/j.crviro.2021.100016

28. Chen Y., Lin J., Zhao Y., Ma X., Yi H. Toll-like receptor 3 (TLR3) regulation mechanisms and roles in antiviral innate immune responses // J Zhejiang Univ Sci B. 2021. V. 22. Iss. 8. P. 609–632. https://doi.org/10.1631/jzus.B2000808

29. Croci S., Venneri M.A., Mantovani S., Fallerini C., Benetti E., Picchiotti N., Campolo F., Imperatore F., Palmieri M., Daga S., Gabbi C., Montagnani F., Beligni G., Farias T.D.J., Carriero M.L., Di Sarno L., Alaverdian D., Aslaksen S., Cubellis M.V., Spiga O., Meloni I. The polymorphism L412F in TLR3 inhibits autophagy and is a marker of severe COVID-19 in males // Autophagy. 2022. V. 18. Iss. 7. P. 1662–1672. https://doi.org/10.1080/15548627.2021.1995152

30. Mertowska P., Smolak K., Mertowski S., Grywalska E. Immunomodulatory Role of Interferons in Viral and Bacterial Infections // International journal of molecular sciences. 2023. V. 24. Iss. 12. URL: https://www.mdpi.com/1422-0067/24/12/10115. (дата обращения: 26.07.2024). https://doi.org/10.3390/ijms241210115

31. Janeway C.A.Jr, Travers P., Walport M. The major histocompatibility complex and its functions. Immunobiology: The Immune System in Health and Disease. 5th edition. New York: Garland Science. 2001. 199 p.

32. Lin F., Lin X., Fu B., Xiong Y., Zaky M.Y., Wu H. Functional studies of HLA and its role in SARS-CoV-2: Stimulating T cell response and vaccine development // Life sciences. 2023. V. 315. Article Id: 121374. https://doi.org/10.1016/j.lfs.2023.121374

33. Crux N.B., Elahi S. Human Leukocyte Antigen (HLA) and Immune Regulation: How Do Classical and Non-Classical HLA Alleles Modulate Immune Response to Human Immunodeficiency Virus and Hepatitis C Virus Infections? // Frontiers in immunology. 2017. V. 8. P. 832. https://doi.org/10.3389/fimmu.2017.00832

34. Kristiansen H., Scherer C.A., McVean M., Iadonato S.P., Vends S., Thavachelvam K., Steffensen T.B., Horan K.A., Kuri T., Weber F., Paludan S.R., Hartmann R. Extracellular 2'-5' oligoadenylate synthetase stimulates RNase L-independent antiviral activity: a novel mechanism of virus-induced innate immunity // Journal of virology. 2010. V. 84. Iss. 22. P. 11898–11904. https://doi.org/10.1128/JVI.01003-10

35. Sánchez-González M.T., Cienfuegos-Jiménez O., Álvarez-Cuevas S., Pérez-Maya A.A., Borrego-Soto G., Marino-Martínez I.A. Prevalence of the SNP rs10774671 of the OAS1 gene in Mexico as a possible predisposing factor for RNA virus disease // International journal of molecular epidemiology and genetics. 2021. V. 12. Iss. 3. P. 52–60.

36. Antony J.S., Ojurongbe O., van Tong H., Ouf E.A., Engleitner T., Akindele A.A., Sina-Agbaje O.R., Adeyeba A.O., Kremsner P.G., Velavan T.P. Mannose-binding lectin and susceptibility to schistosomiasis // The Journal of infectious diseases. 2013. V. 207. Iss. 11. P. 1675–1683. https://doi.org/10.1093/infdis/jit081

37. Jahan I., Hayat S., Khalid M.M., Ahammad R.U., Asad A., Islam B., Mohammad Q.D., Jacobs B.C., Islam Z. Association of mannose-binding lectin 2 gene polymorphisms with Guillain-Barré syndrome // Scientific reports. 2022. V. 12. Article Id: 5791. https://doi.org/10.1038/s41598-022-09621-y

38. Kaler J., Hussain A., Patel K., Hernandez T., Ray S. Respiratory Syncytial Virus: A Comprehensive Review of Transmission, Pathophysiology, and Manifestation // Cureus. 2023. V. 15. Iss. 3. Article Id: 36342. https://doi.org/10.7759/cureus.36342

39. Xuan Y., Wang L.N., Li W., Zi H.R., Guo Y., Yan W.J., Chen X.B., Wei P.M. IFITM3 rs12252 T>C polymorphism is associated with the risk of severe influenza: a meta-analysis // Epidemiology and infection. 2015. V. 143. Iss. 1. P. 2975–2984. https://doi.org/10.1017/S0950268815000278

40. Chen Q., Langenbach S., Li M., Xia Y.C., Gao X., Gartner M.J., Pharo E.A., Williams S.M., Todd S., Clarke N., Ranganathan S., Baker M. L., Subbarao K., Stewart A. G. ACE2 Expression in Organotypic Human Airway Epithelial Cultures and Airway Biopsies // Frontiers in pharmacology. 2022. V. 13. Article Id: 813087. https://doi.org/10.3389/fphar.2022.813087

41. Posadas-Sánchez R., Fragoso J. M., Sánchez-Muñoz F., Rojas-Velasco G., Ramírez-Bello J., López-Reyes A., Martínez-Gómez L.E., Sierra-Fernández C., Rodríguez-Reyna T., Regino-Zamarripa N. E., Ramírez-Martínez G., Zuñiga-Ramos J., Vargas-Alarcón G. Association of the Transmembrane Serine Protease-2 (TMPRSS2) Polymorphisms with COVID-19 // Viruses. 2022. V. 14. Iss. 9. P. 1976. https://doi.org/10.3390/v14091976

42. Pandey R.K., Srivastava A., Singh P.P., Chaubey G. Genetic association of TMPRSS2 rs2070788 polymorphism with COVID-19 case fatality rate among Indian populations // Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases. 2022. V. 98. Article Id: 105206. https://doi.org/10.1016/j.meegid.2022.105206

43. Huffman J.E., Butler-Laporte G., Khan A., Pairo-Castineira E., Drivas T.G., Peloso G.M., Nakanishi T., Ganna A., Verma A., Baillie J.K., Kiryluk K., Richards J.B., Zeberg H. Multiancestry fine mapping implicates OAS1 splicing in risk of severe COVID-19 // Nature genetics. 2022. V. 54. P. 125–127. https://doi.org/10.1038/s41588-021-00996-8

44. Eisen D.P. Mannose-binding lectin deficiency and respiratory tract infection // Journal of innate immunity. 2010. V. 2. Iss. 2. P. 114–122. https://doi.org/10.1159/000228159

45. Falahi S., Zamanian M.H., Feizollahi P., Rezaiemanesh A., Salari F., Mahmoudi Z., Gorgin Karaji A. Evaluation of the relationship between IL-6 gene single nucleotide polymorphisms and the severity of COVID-19 in an Iranian population // Cytokine. 2022. V. 154. Article Id: 155889. https://doi.org/10.1016/j.cyto.2022.155889

46. Li M., Xu Y., Pu K., Fan J., Cheng Z., Chen H., Zhou, L. Genetic polymorphisms of chemokine (C-X-C motif) ligand 10 gene associated with hepatitis B virus infection in a Chinese Han population // International immunopharmacology. 2021. V. 98. Article Id: 107888. https://doi.org/10.1016/j.intimp.2021.107888

47. Ni J., Wang D., Wang S. The CCR5-Delta32 Genetic Polymorphism and HIV-1 Infection Susceptibility: a Meta analysis // Open medicine. 2018. V. 13. P. 467–474. https://doi.org/10.1515/med-2018-0062

48. Chen F., Chen Y., Ke Q., Wang Y., Gong Z., Chen X., Cai Y., Li S., Sun Y., Peng X., Ji Y., Zhang T., Wu W., Cui L., Wang Y. ApoE4 associated with severe COVID-19 outcomes via downregulation of ACE2 and imbalanced RAS pathway // Journal of translational medicine. 2023. V. 21. Iss. 1. P. 103. https://doi.org/10.1186/s12967-023-03945-7

49. Jocher G., Grass V., Tschirner S.K., Riepler L., Breimann S., Kaya T., Oelsner M., Hamad M.S., Hofmann L. I., Blobel C.P., Schmidt-Weber C.B., Gokce O., Jakwerth C.A., Trimpert J., Kimpel J., Pichlmair A., Lichtenthaler S. F. ADAM10 and ADAM17 promote SARS-CoV-2 cell entry and spike proteinmediated lung cell fusion // EMBO reports. 2022. V. 23. Iss. 6. Article Id: e54305. https://doi.org/10.15252/embr.202154305

50. Bochkov Y.A., Watters K., Ashraf S., Griggs T.F., Devries M.K., Jackson D.J. Palmenberg A.C., Gern J.E. Cadherinrelated family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication // Proceedings of the National Academy of Sciences of the United States of America. 2015. V. 112. Iss. 17. P. 5485–5490. https://doi.org/10.1073/pnas.1421178112

51. Mesa F., Lanza E., García L., Marfil-Alvarez R., Magan-Fernandez A. Polymorphism IL-1RN rs419598 reduces the susceptibility to generalized periodontitis in a population of European descent // PLoS One. 2017. V. 12. Iss. 10. Article Id: e0186366. https://doi.org/10.1371/journal.pone.0186366

52. Braga M., Lara-Armi F.F., Neves J.S.F., Rocha-Loures M.A., Terron-Monich M.S., Bahls-Pinto L.D., de Lima Neto Q.A., Zacarias J.M.V., Sell A.M., Visentainer J.E.L. Influence of IL10 (rs1800896) Polymorphism and TNF-α, IL-10, IL-17A, and IL-17F Serum Levels in Ankylosing Spondylitis // Frontiers in immunology. 2021. V. 12. Article Id: 653611. https://doi.org/10.3389/fimmu.2021.653611

53. Wang X., Stelzer-Braid S., Scotch M., Rawlinson W.D. Detection of respiratory viruses directly from clinical samples using next-generation sequencing: A literature review of recent advances and potential for routine clinical use // Reviews in medical virology. 2022. V. 32. Iss. 5. Article Id: e2375. https://doi.org/10.1002/rmv.2375

54. Adli A., Rahimi M., Khodaie R., Hashemzaei N., Hosseini S.M. Role of genetic variants and host polymorphisms on COVID-19: From viral entrance mechanisms to immunological reactions // Journal of medical virology. 2022. V. 94. Iss. 5. P. 1846–1865. https://doi.org/10.1002/jmv.27615

55. Cappadona C., Rimoldi V., Paraboschi E.M., Asselta R. Genetic susceptibility to severe COVID-19 // Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases. 2023. V. 110. Article Id: 105426. https://doi.org/10.1016/j.meegid.2023.105426

56. Bochkov Y.A., Gern J.E. Rhinoviruses and Their Receptors: Implications for Allergic Disease // Current allergy and asthma reports. 2016. V. 16. Iss. 4. P. 30. https://doi.org/10.1007/s11882-016-0608-7

57. Bønnelykke K., Coleman A.T., Evans M.D., Thorsen J., Waage J., Vissing N.H., Carlsson C.J., Stokholm, J., Chawes B. L., Jessen L.E., Fischer T.K., Bochkov Y.A., Ober C., Lemanske R.F., Jr Jackson D.J., Gern J.E., Bisgaard H. Cadherin-related Family Member 3 Genetics and Rhinovirus C Respiratory Illnesses // American journal of respiratory and critical care medicine. 2018. V. 197. Iss. 5. P. 589–594. https://doi.org/10.1164/rccm.201705-1021OC

58. McClain M.T., Constantine F.J., Nicholson B.P., Nichols M., Burke T.W., Henao R., Jones D.C., Hudson L.L., Jaggers L.B., Veldman T., Mazur A., Park L.P., Suchindran S., Tsalik E.L., Ginsburg G.S., Woods C.W. A blood-based host gene expression assay for early detection of respiratory viral infection: an index-cluster prospective cohort study // The Lancet. Infectious diseases. 2021. V. 21. Iss. 3. P. 396–404. https://doi.org/10.1016/S1473-3099(20)30486-2

59. Kwok A.J., Mentzer A. Knight J.C. Host genetics and infectious disease: new tools, insights and translational opportunities // Nature Reviews Genetics. 2021. V. 22. P. 137–153. https://doi.org/10.1038/s41576-020-00297-6

60. Zhang Y., Makvandi-Nejad S., Qin L., Zhao Y., Zhang T., Wang L., Repapi E., Taylor S., McMichael A., Li N., Dong T., Wu H. Interferon-induced transmembrane protein-3 rs12252-C is associated with rapid progression of acute HIV-1 infection in Chinese MSM cohort // AIDS. 2015. V. 29. Iss. 8. P. 889–894. https://doi.org/10.1097/QAD.0000000000000632

61. Solanich X., Vargas-Parra G., van der Made C.I., Simons A., Schuurs-Hoeijmakers J., Antolí A., Del Valle J., Rocamora-Blanch G., Setién F., Esteller M., van Reijmersdal S.V., Riera-Mestre A., Sabater-Riera J., Capellá G., van de Veerdonk F.L., van der Hoven B., Corbella X., Hoischen A., Lázaro C. Genetic Screening for TLR7 Variants in Young and Previously Healthy Men with Severe COVID-19 // Frontiers in immunology. 2021. V. 12. Article Id: 719115. https://doi.org/10.3389/fimmu.2021.719115

62. Goetz L.H., Schork N.J. Personalized medicine: motivation, challenges, and progress // Fertility and sterility. 2018. V. 109. Iss. 6. P. 952–963. https://doi.org/10.1016/j.fertnstert.2018.05.006

63. Nag S., Mandal S., Mukherjee O., Mukherjee S., Kundu R. DPP-4 Inhibitors as a savior for COVID-19 patients with diabetes // Future virology. 2022. V. 18. Iss. 5. P. 321–333. https://doi.org/10.2217/fvl-2022-0112

64. Hussen B.M., Najmadden Z.B., Abdullah S.R., Rasul M.F., Mustafa S.A., Ghafouri-Fard S., Taheri M. CRISPR/Cas9 gene editing: a novel strategy for fighting drug resistance in respiratory disorders // Cell communication and signaling: CCS. 2024. V. 22. Iss. 1. P. 329. https://doi.org/10.1186/s12964-024-01713-8


Рецензия

Для цитирования:


Мошкин А.Д., Столбунова К.А., Мацвай А.Д., Охлопкова О.В. Генетические мутации, ассоциированные с тяжелым течением респираторных заболеваний. Юг России: экология, развитие. 2024;19(4):28-40. https://doi.org/10.18470/1992-1098-2024-4-3

For citation:


Moshkin A.D., Stolbunova K.A., Matsvay A.D., Ohlopkova O.V. Genetic mutations associated with severe respiratory diseases. South of Russia: ecology, development. 2024;19(4):28-40. (In Russ.) https://doi.org/10.18470/1992-1098-2024-4-3

Просмотров: 170


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1992-1098 (Print)
ISSN 2413-0958 (Online)