Составы биопестицидов для защиты сельскохозяйственных культур – современное состояние и перспективы (обзор)
https://doi.org/10.18470/1992-1098-2024-3-8
Аннотация
Цель: обобщить и проанализировать доступную информацию об исследованиях в области составов биопестицидов, которые направлены на усиление их эффективности, и оценить перспективы развития данного направления, для определения влияния компонентов на эффективность биопестицидов для защиты сельскохозяйственных культур.
В данной обзорной статье на основе системного анализа приведены результаты исследований компонентов, входящих в составы биопестицидов на основе микроорганизмов. Отмечено, что выбор компонентов биопестицидов необходимо осуществлять согласно требованиям, предъявляемым к продукции, рекомендованной для применения в системах экологического и органического земледелия. Указано, что выбор оптимальной рецептуры связан как с особенностями штаммов‐продуцентов, их трофических потребностей и устойчивости по отношению к биотическим и абиотическим факторам, так и с особенностями технологии применения биопестицида (обработка семян, внесение в грунт или обработка растений в процессе вегетации), а также типом применяемой аппаратуры.
Знание основных требований, предъявляемых к препаративным формам биопестицидам, позволит поддерживать жизнеспособность и биологическую активность микробных агентов при хранении биопестицидов, учитывая чувствительность штаммов‐продуцентов к условиям окружающей среды. Подбор оптимальных носителей, прилипателей, стабилизаторов, загустителей и синергистов с учетом технологии применения биопестицида и патогена‐мишени будет способствовать разработке и появлению на рынке новых биопестицидов для защиты сельскохозяйственных культур от болезней.
Об авторах
А. И. ХомякРоссия
Анна И. Хомяк, научный сотрудник
350039 г. Краснодар, п/о‐39. Тел. +79673115810
Конфликт интересов:
Авторы заявляют об отсутствии конфликта интересов
А. М. Асатурова
Россия
Анжела М. Асатурова
Краснодар
Конфликт интересов:
Авторы заявляют об отсутствии конфликта интересов
Список литературы
1. Азизбекян Р.Р. Биологические препараты для защиты сельскохозяйственных растений (Обзор) // Биотехнология. 2018. Т. 34. N 5. C. 37–47. https://doi.org/10.21519/0234‐2758‐2018‐34‐5‐37‐47
2. Hernandez‐Tenorio F., Miranda A.M., Rodríguez C.A., Giraldo‐Estrada C., Sáez A.A. Potential Strategies in the Biopesticide Formulations: A Bibliometric Analysis // Agronomy. 2022. N 12. P. 2665. https://doi.org/10.3390/agronomy12112665
3. Mascarin G.M., Jackson M.A., Behle R.W., Kobori N.N., Júnior Í.D. Improved shelf life of dried Beauveria bassiana blastospores using convective drying and active packaging processes // Applied Microbiology and Biotechnology. 2016. V.100. N 19. P. 1–12. https://doi.org/10.1007/s00253‐016‐7597‐2
4. Маслиенко Л.В., Воронкова А.Х. Элементы лабораторного регламента производства микробиопрепаратов в препаративной форме «смачивающийся порошок» на основе бактерий‐ антагонистов из рода Pseudomonas при поверхностном культивировании на жидкой питательной среде // Масличные культуры. Научнотехнический бюллетень Всероссийского научно‐исследовательского института масличных культур. 2018. T. 1. N 173. C. 87–93.
5. Mishra J., Dutta V., Arora N.K. Biopesticides in India: technology and sustainability linkages // Biotechnology. 2020. N 10. P. 210. https://doi.org/10.1007/s13205‐020‐02192‐7
6. Damalas C.A., Koutroubas S.D. Current Status and Recent Developments in Biopesticide Use // Agriculture. 2018. N 8. P. 13. https://doi.org/10.3390/agriculture8010013
7. Mesnage R., Bernay B., Seralini G. Ethoxylated adjuvants of glyphosate‐based herbicides are active principles of human cell toxicity // Toxicology. 2013. N 313. P. 122–128. https://doi.org/10.1016/j.tox.2012.09.006
8. Brar S.K., Verma M., Tyagi R.D., Valéro, J.R. Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides // Process biochemistry. 2006. V. 41. N 2. P. 323–342.
9. Koul O. Biopesticides: commercial opportunities and challenges. In: Development and Commercialization of Biopesticides; Costs and benefits. Amsterdam: Elsevier Inc., AACC International, 2023. P. 1–23.
10. Mesnage R., Antoniou M.N. Ignoring adjuvant toxicity falsifies the safety profile of commercial pesticides // Frontiers in public health. 2018. N 5. P. 361. https://doi.org/10.3389/fpubh.2017.00361
11. Market and Markets. Agricultural Adjuvants Market by Type (Activator and Utility), Application (Herbicides, Fungicides, and Insecticides), Crop‐Type (Cereals and Oilseeds and Fruits and Vegetables), and by Region. Global Trends and Forecast to 2021. 2016. URL: https://www.marketsandmarkets.com/Market‐Reports/adjuvant‐market 1240.html (дата обращения: 17.07.2023)
12. Tijjani A., Bashir K.A., Mohammed I., Muhammad A., Gambo A., Musa H. Biopesticides for pests control: A review // Journal of Biopesticides and Agriculture. 2016. V. 3. N 1. P. 6– 13.
13. Хужаназарова М.К., Муродова С.С. Технология получения биопрепарата на основе ризобактерий, иммобилизированных флокулянтом Гипан // Научное обозрение. Биологические науки. 2022. N 3. C. 34–38. https://doi.org/10.17513/srbs.1281
14. Behle R., Birthisel T. Formulations of entomopathogens as bioinsecticides. In: Mass production of beneficial organisms. USA: Academic Press, 2023. P. 407–429. https://doi.org/10.1016/B978‐0‐12‐822106‐8.00010‐5
15. do Nascimento Silva J., Mascarin G.M., de Castro R.P.V., Castilho L.R., Freire D.M.G. Novel combination of a biosurfactant with entomopathogenic fungi enhances efficacy against Bemisia whitefly // Pest management science. 2019. V. 75. N 11. P. 2882–2891. https://doi.org/10.1002/ps.5458
16. Sachdev S., Singh R.P. Current challenges, constraints and future strategies for development of successful market for biopesticides // Climate Change and EnvironmentalSustainability. 2016. V. 4. N 2. P. 129–136. https://doi.org/10.5958/2320‐642X.2016.00014.4
17. Павлюшин В.А., Новикова И.И., Бойкова И.В. Микробиологическая защита растений в технологиях фитосанитарной оптимизации агроэкосистем: теория и практика (обзор) // Сельскохозяйственная биология. 2020. T. 55. N 3. C. 421–438. https://doi.org/10.15389/agrobiology.2020.3.421rus
18. Huff Hartz K.E., Edwards T.M., Lydy M.J. Fate and transport of furrow‐applied granular tefluthrin and seed‐coated clothianidin insecticides: comparison of field‐scale observations and model estimates // Ecotoxicology. 2017. N 26. P. 876–888. https://doi.org/10.1007/s10646‐017‐1818‐z
19. Bharti V., Ibrahim S. Biopesticides: Production, formulation and application systems // International Journal of Current Microbiology and Applied Science. 2020. V. 9. N 10. P. 3931– 3946. https://doi.org/10.20546/ijcmas.2020.910.453
20. Preininger C., Sauer U., Bejarano A., Berninger T. Concepts and applications of foliar spray for microbial inoculants // Applied microbiology and biotechnology. 2018. N 102. P. 7265–7282. https://doi.org/10.1007/s00253‐018‐9173‐4
21. Rumbos C.I., Athanassiou C.G. Use of entomopathogenic fungi for the control of stored‐product insects: can fungi protect durable commodities? // Journal of Pest Science. 2017. N 90. P. 839–854. https://doi.org/10.1007/s10340‐017‐0849‐9
22. de la Cruz Quiroz R., Cruz Maldonado J., Rostro Alanis M. Fungi‐based biopesticides: shelf‐life preservation technologies used in commercial products // Journal of Pest Science. 2019. N 92. P. 1003–1015. https://doi.org/10.1007/s10340‐019‐01117‐5
23. Essiedu J.A., Adepoju F.O., Ivantsova M.N. Benefits and limitations in using biopesticides: A review // In AIP Conference Proceedings. 2020. N 2313. Article id: 080002.
24. Alamprese C., Cappa C., Ratti S., Limbo S., Signorelli M., Fessas D., Lucisano M. Shelf life extension of whole‐wheat breadsticks: Formulation and packaging strategies // Food chemistry. 2017. N 230. P. 532–539.
25. Keswani C., Sarma B.K., Singh H.B. Synthesis of policy support, quality control, and regulatory management of biopesticides in sustainable agriculture // Agriculturally Important Microorganisms. 2016. P. 3–12. https://doi.org/10.1007/978‐981‐10‐2576‐1_1
26. Zabot G.L., Schaefer Rodrigues F., Polano Ody L., Vinícius Tres M., Herrera, E., Palacin H., Córdova‐Ramos J.S., Best I., Olivera‐Montenegro L. Encapsulation of Bioactive Compounds for Food and Agricultural Applications // Polymers. 2022. N 14. P. 4194. https://doi.org/10.3390/polym14194194
27. Oliveira D.G.P., Lopes R.B., Rezende J.M., Delalibera Jr. I., Increased tolerance of Beauveria bassiana and Metarhizium anisopliae conidia to high temperature provided by oil‐based formulations // J. Invertebr Pathol. 2018. N 151. P. 151–157. https://doi.org/10.1016/j.jip.2017.11.012
28. Lei C.J., Halim N.A., Asib N., Zakaria A., Azmi W.A. Conidial Emulsion Formulation and Thermal Storability of Metarhizium anisopliae against Red Palm Weevil, Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae) // Microorganisms. 2022. N 10. P. 1460. https://doi.org/10.3390/microorganisms10071460
29. Teixidó N., Usall J., Torres R. Insight into a Successful Development of Biocontrol Agents: Production, Formulation, Packaging, and Shelf Life as Key Aspects // Horticulturae. 2022. N 8. P. 305. https://doi.org/10.3390/horticulturae8040305
30. Fraceto L.F., Maruyama C.R., Guilger M., Mishra S., Keswani C., Singh H.B., de Lima R. Trichoderma harzianum‐ based novel formulations: potential applications for management of Next‐Gen agricultural challenges // Journal of Chemical Technology and Biotechnology. 2018. V. 93. N 8. P. 2056–2063. https://doi.org/10.1002/jctb.5613
31. Grijalba E.P., Espinel C., Cuartas P.E., Chaparro M.L., Villamizar L.F., Metarhizium rileyi biopesticide to control Spodoptera frugiperda: Stability and insecticidal activity under glasshouse conditions // Fungal Biology. 2018. V. 122. N 11. P. 1069–1076. https://doi.org/10.1016/j.funbio.2018.08.010
32. Awan U. A., Xia S., Meng L., Raza M. F., Zhang Z., Zhang H. Isolation, characterization, culturing, and formulation of a new Beauveria bassiana fungus against Diaphorina citri // Biological Control. 2021. N 158. Article id: 104586. https://doi.org/10.1016/j.biocontrol.2021.104586
33. Yaakov N., Ananth Mani K., Felfbaum R., Lahat M., Da Costa N., Belausov E., Ment D., Mechrez G. Single Cell Encapsulation via Pickering Emulsion for Biopesticide Applications // ACS Omega. 2018. N 3. P. 14294– 14301. https://doi.org/10.1021/acsomega.8b02225
34. Yaakov N., Kottakota C., Mani K.A., Naftali S.M., Zelinger E., Davidovitz M., Ment D., Mechrez G. Encapsulation of Bacillus Thuringiensis in an Inverse Pickering Emulsion for Pest Control Applications. Colloids Surf // B Biointerfaces. 2022. N 213. Article id: 112427. https://doi.org/10.1016/j.colsurfb.2022.112427
35. Birnbaum N., Reingold V., Matveev S., Kottakota C., Davidovitz M., Mani K.A., Feldbaum R., Yaakov N., Mechrez G., Ment D. Not Only a Formulation: The Effects of Pickering Emulsion on the Entomopathogenic Action of Metarhizium brunneum // Journal of Fungi. 2021. P. V. 7. N 7. P. 499. https://doi.org/10.3390/jof7070499
36. Alves F.M., Bernardo C.C., Paixão F.R.S., Barreto L.P., Luz C., Humber R.A., Fernandes É.K.K. Heat‐stressed Metarhizium anisopliae: Viability (in vitro) and virulence (in vivo) assessments against the tick Rhipicephalus sanguineus // Parasitology Research. 2017. N 116. P. 111–121. https://doi.org/10.1007/s00436‐016‐5267‐z
37. Muniz E.R., Paixão F.R.S., Barreto L.P., Luz C., Arruda W., Angelo I.C., Fernandes É.K.K. Efficacy of Metarhizium anisopliae conidia in oil‐in‐water emulsion against the tick Rhipicephalus microplus under heat and dry conditions // BioControl. 2020. N 65. P. 339–351.
38. Upadhyay H., Mirza A., Singh J. Impact of Biopesticides in Sustainable Agriculture // Advances in Plant Microbiome and Sustainable Agriculture. Microorganisms for Sustainability. Singapore: Springer, 2020. P. 281–296. https://doi.org/10.1007/978‐981‐15‐3208‐5_11
39. Mejía C., Espinel C., Forero M., Ramos F. A., Brandão P. F. B., Villamizar L. Improving ecological fitness of Beauveria bassiana conidia to control the sugar cane borer Diatraea saccharalis // Biocontrol Science and Technology. 2020. V. 30. N 6. P. 513–530. https://doi.org/10.1080/09583157.2020.1738343
40. Nandhini M., Harish S., Aiyanathan K.E.A., Durgadevi D., Beaulah A. Glycerol‐based liquid formulation of the epiphytic yeast Hanseniaspora guilliermondii isolate YBB3 with multiple modes of action controls postharvest Aspergillus rot in grapes // The Plant Pathology Journal. 2021. N 103. P. 1253–1264. https://doi.org/10.1007/s42161‐021‐00909‐y
41. Nerek E., Sokołowska B. Pseudomonas spp. in biological plant protection and growth promotion // AIMS Environmental Science. 2022. V. 9. N 4. P. 493–504. https://doi.org/10.3934/environsci.2022029
42. Saleh M.M.E., Metwally H.M.S., Abonaem M. Commercialization of biopesticides based on entomopathogenic nematodes. In: Cottage Industry of Biocontrol Agents and Their Applications: Practical Aspects to Deal Biologically with Pests and Stresses Facing Strategic Crops. Singapore: Springer, 2020. P. 253–275. https://doi.org/10.1007/978‐3‐030‐33161‐0_8
43. Hussaini S.S., Rajeshwari R., Rajeshwari R., Appanna V. Potential of Entomopathogenic Nematodes // Biopesticides in Horticultural Crops. 2021. N 17. P. 80–99.
44. Kotliarevski L., Cohen R., Ramakrishnan J., Wu S., Mani K. A. Amar‐Feldbaum, R. Mechrez, G. Individual coating of entomopathogenic nematodes with titania (TiO2)nanoparticles based on oil‐in‐water Pickering emulsion: A new formulation for biopesticides // Journal of Agricultural and Food Chemistry. 2022. V. 70. N 42. P. 13518–13527. https://doi.org/10.1021/acs.jafc.2c04424
45. Panichikkal J., Prathap G., Nair R.A., Krishnankutty R.E. Evaluation of plant probiotic performance of Pseudomonas sp. encapsulated in alginate supplemented with salicylic acid and zinc oxide nanoparticles // International Journal of Biological Macromolecules. 2021. N 166. P. 138–143. https://doi.org/10.1016/j.ijbiomac.2020.10.110
46. Leite L.G., Shapiro‐Ilan D.I., Hazir S. Survival of Steinernema feltiae in different formulation substrates: Improved longevity in a mixture of gel and vermiculite // Biological Control. 2018. N 126. P. 192–197. https://doi.org/10.1016/j.biocontrol.2018.05.013
47. Pour M.M., Saberi‐Riseh R., Mohammadinejad R., Hosseini A. Investigating the Formulation of Alginate‐Gelatin Encapsulated Pseudomonas Fluorescens (VUPF5 and T17‐4 Strains) for Controlling Fusarium Solani on Potato // International Journal of Biological Macromolecules. 2019. N 133. P. 603–613. https://doi.org/10.1016/j.ijbiomac.2019.04.071
48. Rodrigues J., Catão A.M.L., dos Santos A.S. Relative humidity impacts development and activity against Aedes aegypti adults by granular formulations of Metarhizium humberi microsclerotia // Applied Microbiology and Biotechnology. 2021. N 105. P. 2725–2736. https://doi.org/10.1007/s00253‐021‐11157‐6
49. Маслиенко Л.В., Воронкова А.Х. Элементы лабораторного регламента производства микробиопрепаратов на основе грибных штаммов‐ продуцентов в препаративной форме "смачивающийся порошок" // Масличные культуры. Научно‐технический бюллетень Всероссийского научно‐исследовательского института масличных культур. 2016. T. 4. N 168. C. 100–107.
50. Acheampong M.A., Coombes C.A., Moore S.D., Hill M.P. Temperature tolerance and humidity requirements of select entomopathogenic fungal isolates for future use in citrus IPM programmes // Journal of Invertebrate Pathology. 2020. N 174. Article id: 107436. https://doi.org/10.1016/j.jip.2020.107436
51. Atanasova‐Pancevska N., Kungulovski D. Isolation, characterization and formulation of antagonistic bacteria against fungal plant pathogens // AGROFOR. 2018. V. 3. N 3. P. 80–89. https://doi.org/10.7251/AGRENG1803080A
52. Albuquerque P.B.S., de Oliveira W.F., dos Santos Silva P.M., dos Santos Correia M.T., Kennedy J.F., Coelho L.C.B.B. Epiphanies of well‐known and newly discovered macromolecular carbohydrates – A review // International journal of biological macromolecules. 2020. N 156. P. 51–66. https://doi.org/10.1016/j.ijbiomac.2020.04.046
53. Sahai P., Sinha V. B., Dutta R. Bioformulation and nanotechnology in pesticide and fertilizer delivery system for eco‐friendly agriculture: a review // Sci Agric. 2019. N 3. P. 2– 10. https://doi.org/10.31080/ASAG.2019.03.0675
54. Ndao A., Kumar L.R., Tyagi R.D., Valéro J. Biopesticide and formulation processes based on starch industrial wastewater fortified with soybean medium // Journal of Environmental Science and Health, Part B. 2019. V. 55. N 2. P. 115–126. https://doi.org/10.1080/03601234.2019.1668225
55. Mahde B.Y., Fayyadh M.A., Al‐Luaibi S.S. Evaluation of Biofungicide Formulation of Trichoderma longibrachiatum in Controlling of Tomato Seedling Damping‐off Caused by Rhizoctonia solani // Basrah Journal of Agricultural Sciences. 2019. V. 32. N 2. P. 135–149. https://doi.org/10.37077/25200860.2019.204
56. Adusei‐Fosu K., Rolando C.A., Richardson B. Evaluating the efficacy of potential fungicide‐adjuvant combinations for control of myrtle rust in New Zealand // Journal of Plant Diseases and Protection. 2021. V. 128. N 6. P. 1501–1515. https://doi.org/10.1007/s41348‐021‐00523‐1
57. Lin F., Mao Y., Zhao F., Idris A.L., Liu Q., Zou S., Guan X., Huang T. Towards Sustainable Green Adjuvants for Microbial Pesticides: Recent Progress, Upcoming Challenges, and Future Perspectives // Microorganisms. 2023. N 11. P. 364. https://doi.org/10.3390/microorganisms11020364
58. Prince G., Chandler D. Susceptibility of Myzus persicae, Brevicoryne brassicae and Nasonovia ribisnigri to fungal biopesticides in laboratory and field experiments // Insects. 2020. V. 11. N 1. P. 55.
59. Berrie A., Xu, X. Developing biopesticide‐based programmes for managing powdery mildew in protected strawberries in the UK // Crop Protection. 2021. N 149. Article id: 105766. https://doi.org/10.1016/j.cropro.2021.105766
60. Reiss A., Jørgensen L.N. Biological control of yellow rust of wheat (Puccinia striiformis) with Serenade ® ASO (Bacillus subtilis strain QST713) // Crop Protection. 2017. N 93. P. 1–8. https://doi.org/10.1016/j.cropro.2016.11.009
61. Singh A., Dhiman N., Kar A.K., Singh D., Purohit M.P., Ghosh D., Patnaik S. Advances in controlled release pesticide formulations: Prospects to safer integrated pest management and sustainable agriculture // Journal of hazardous materials. 2020. N 385. Article id: 121525. https://doi.org/10.1016/j.jhazmat.2019.121525
62. Максимов И.В., Сорокань А.В., Шеин М.Ю., Хайруллин Р.М. Биологические методы защиты растений от вирусов: проблемы и перспективы (обзор) // Прикладная биохимия и микробиология. 2020. T. 56. N 6. C. 536–550. https://doi.org/10.31857/S0555109920060100
63. Marzban R., Babaei J., Kalantari M., Saberi F. Preparation of wettable powder formulation of Bacillus thuringiensis KD2 // Journal of Applied Biological Sciences. 2021. V. 15. N 3. P. 285–293.
64. Zaman S., Rasul A., Khan A.G., Ali Q., Anwar T., Faisal M., Qasim M.U. Effect of abiotic factors on the efficacy of Beauveria bassiana and diatomaceous earth against Rhyzopertha dominica (F.): Efficacy of bio‐pesticides against R. dominica under different abiotic factors // Journal of Applied Biological Sciences. 2020. V. 14. N 1. P. 98–112. https://jabsonline.org/index.php/jabs/article/view/830
65. An C., Sun C., Li N. Nanomaterials and nanotechnology for the delivery of agrochemicals: strategies towards sustainable agriculture // Journal of Nanobiotechnology. 2022. N 20. P. 11. https://doi.org/10.1186/s12951‐021‐01214‐7
66. Оленин О.А., Зудилин С.Н. Влияние инновационных органических удобрений и биопрепаратов на урожайность ярового ячменя в лесостепи среднего Поволжья // Известия Самарской государственной сельскохозяйственной академии. 2021. N 4. C. 17–23.
67. Liu Q., Geng L., Liu C., Wang Q., Zhang J., Bai X., Shu C. Study on the Granular Carrier to Enhance the Control Effect of Bacillus thuringiensis and Beauveria bassiana on Grubs[J] // Chinese Journal of Biological Control. 2021. V. 37. N 2. P. 193– 200. https://doi.org/10.16409/j.cnki.2095‐039x.2021.05.003
68. Novinscak A., Filion M. Long term comparison of talc‐and peat‐based phytobeneficial Pseudomonas fluorescens and Pseudomonas synxantha bioformulations for promoting plant growth // Frontiers in Sustainable Food Systems. 2020. N 4. Article id: 602911. https://doi.org/10.3389/fsufs.2020.602911
69. Zhou X., Li H., Liu Y., Hao J, Liu H., Lu X. Improvement of stability of insecticidal proteins from Bacillus thuringiensis against UV‐irradiation by adsorption on sepiolite // Adsorption Science and Technology. 2018. V. 36. N 56. P. 1233–1245. https://doi.org/10.1177/0263617418759777
70. Fomina M., Skorochod I. Microbial Interaction with Clay Minerals and Its Environmental and Biotechnological Implications // Minerals. 2020. N 10. P. 861. https://doi.org/10.3390/min10100861
71. Vanhaelewyn L., Van Der Straeten D., De Coninck B. Vandenbussche F. Ultraviolet Radiation From a Plant Perspective: The Plant‐Microorganism Context // Frontiers inPlant Science. 2020. N 11. Article id: 597642. https://doi.org/10.3389/fpls.2020.597642
72. Enwemeka C.S., Baker T.L., Bumah V.V. The role of UV and blue light in photo‐eradication of microorganisms // Journal of Photochemistry and Photobiology. 2021. N 8. Article id: 100064. https://doi.org/10.1016/j.jpap.2021.100064
73. do Nascimento Jn. D.R., Tabernero A., Cabral Albuquerque E.C.d.M., Vieira de Melo S.A.B. Biopesticide Encapsulation Using Supercritical CO2: A Comprehensive Review and Potential Applications // Molecules. 2021. N 26. Article id: 4003. https://doi.org/10.3390/molecules26134003
74. Licona‐Juárez K.C., Bezerra A.V.S., Oliveira I.T., Massingue C.D., Medina H.R., Rangel D.E. Congo red induces trans‐ priming to UV‐B radiation in Metarhizium robertsii // Fungal Biology. 2023. N 06. P. 21. https://doi.org/10.1016/j.funbio.2023.06.005
75. Saleh H., Abdelrazak A., Elsayed A. Optimizing production of a biopesticide protectant by black yeast // Egyptian Journal of Biological Pest Control. 2018. N 28. P. 72. https://doi.org/10.1186/s41938‐018‐0078‐4
76. Kalmath B., Bheemanna M., Prabhuraj A. Evaluation of UV protectants for wettable powder formulation of native Bacillus thuringiensis (Berliner) isolate against Helicoverpa armigera (Hubner) in the Laboratory // Journal of Biological Control. 2018. V. 32. N 3. P. 179–186. https://doi.org/10.18311/jbc/2018/21661
77. Akhanaev Y., Pavlushin S., Polenogova O. The effect of mixtures of Bacillus thuringiensis‐based insecticide and multiple nucleopolyhedrovirus of Lymantria dispar L. in combination with an optical brightener on L. dispar larvae // BioControl. 2022. N 67. P. 331–343. https://doi.org/10.1007/s10526‐022‐10137‐7
78. Lee J. Y., Woo R. M., Woo S. D. Formulation of the entomopathogenic fungus Beauveria bassiana JN5R1W1 for the control of mosquito adults and evaluation of its novel applicability // Journal of Asia‐Pacific Entomology. 2023. V 26. N 2. Article id: 102056. https://doi.org/10.1016/j.aspen.2023.102056
79. Awan U.A., Meng L., Xia S., Raza M.F., Zhang Z., Zhang H. Isolation, fermentation, and formulation of entomopathogenic fungi virulent against adults of Diaphorina citri // Pest Management Science. 2021. V. 77. N 9. P. 4040–4053. https://doi.org/10.1002/ps.6429
80. Kaiser D., Bacher S., Mène‐Saffrané L., Grabenweger G. Efficiency of natural substances to protect Beauveria bassiana conidia from UV radiation // Pest management science. 2019. V. 75. N 2. P. 556–563. https://doi.org/10.1002/ps.5209
81. Feldbaum R.A., Yaakov N., Mani K.A., Yossef E., Metbeev S., Zelinger E., Mechrez G. Single cell encapsulation in a Pickering emulsion stabilized by TiO2 nanoparticles provides protection against UV radiation for a biopesticide // Colloids and Surfaces B: Biointerfaces. 2021. N 206. Article id: 111958.
82. Jalali E., Maghsoudi S. Noroozian E. A novel method for biosynthesis of different polymorphs of TiO2 nanoparticles as a protector for Bacillus thuringiensis from Ultra Violet // Scientific Reports. 2020. N 10. P. 426. https://doi.org/10.1038/s41598‐019‐57407‐6
83. Жемчужина Н.С., Фокин А.О., Елизарова С.А., Горелов П.В. Новая форма биопрепаратов – микроконтейнеры из полимерного биоразлагаемого материала // Лаборатория и производство. 2018. T. 1. N 1. P. 138–141.
84. Bueno M.R., da Cunha J.P.A.R., Santana D.G. Assessment of spray drift from pesticide applications in soybean crops // Biosyst Eng. 2016. N 154. P. 35–45. https://doi.org/10.1016/j.biosystemseng.2016.10.017
85. Ndao A., Sellamuthu B., Gnepe J.R., Tyagi R.D., Valero J.R. Pilot‐scale biopesticide production by Bacillus thuringiensis subsp. kurstaki using starch industry wastewater as raw material // Journal of Environmental Science and Health, Part B. 2017. V. 52. N 9. P. 623–630.
86. Chin J.M., Lim Y.Y., Ting A.S.Y. Biopriming Pseudomonas fluorescens to vegetable seeds with biopolymers to promote coating efficacy, seed germination and disease suppression // Journal of the Saudi Society of Agricultural Sciences. 2022. V. 21. N 8. P. 493–505. https://doi.org/10.1016/j.jssas.2022.02.002
87. Peil S., Beckers S.J., Fischer J., Wurm F.R. Biodegradable, lignin‐based encapsulation enables delivery of Trichoderma reesei with programmed enzymatic release against grapevine trunk diseases // Materials Today Bio. 2020. N 7. Article id: 100061. https://doi.org/10.1016/j.mtbio.2020.100061
88. Abbey J.A., Percival D., Abbey L., Asiedu S.K., Prithiviraj B., Schilder A. Biofungicides as alternative to synthetic fungicide control of grey mould (Botrytis cinerea) – prospects and challenges // Biocontrol science and technology. 2019. V. 29. N 3. P. 207–228. https://doi.org/10.1080/09583157.2018.1548574
89. Chen H., Zhao S., Zhang K., Zhao J., Jiang J., Chen F., Fang W. Evaluation of Soil‐Applied Chemical Fungicide and Biofungicide for Control of the Fusarium Wilt of Chrysanthemum and Their Effects on Rhizosphere Soil Microbiota // Agriculture. 2018. N 8. P. 184. https://doi.org/10.3390/agriculture8120184
90. Soytong K., Song J.J., Dinh M.T., Hoang H. Research investigation of natural products from microorganisms for sustainable agriculture in Vietnam: A short communication // International Journal of Agricultural Technology. 2020. V. 16. N 2. P. 421–428.
91. Liu L., Zhao K., Cai L., Zhang Y., Fu Q., Huang S. Combination effects of tebuconazole with Bacillus subtilis to control rice false smut and the related synergistic mechanism // Pest Management Science. 2023. V. 79. N 1. P. 234–243. https://doi.org/10.1002/ps.7193
92. Trejo‐Raya A.B., Rodríguez‐Romero V.M., Bautista‐Baños S., Quiroz‐Figueroa F.R., Villanueva‐Arce R., Durán‐Páramo E. Effective In Vitro Control of Two Phytopathogens of Agricultural Interest Using Cell‐Free Extracts of Pseudomonas fluorescens and Chitosan // Molecules. 2021. N 26. P. 6359. https://doi.org/10.3390/molecules26216359
93. Kappel L., Kosa N., Gruber S. The multilateral efficacy of chitosan and Trichoderma on sugar beet // Journal of Fungi. 2022. V. 8. N 2. P. 137. https://doi.org/10.3390/jof8020137
94. Колесников Л.Е., Попова Э.В., Новикова И.И., Прияткин Н.С., Архипов М.В., Колесникова Ю.Р., Потрахов Н.Н., Van Duijn B., Гусаренко А.С. Совместное использование штаммов микроорганизмов и хитозановых комплексов для повышения урожайности пшеницы (Triticum aestivum L.) // Сельскохозяйственная биология. 2019. T. 54. N 5. C. 1024– 1040. https://doi.org/10.15389/agrobiology.2019.5.1024rus.
95. Şengül Demirak M.Ş., Canpolat E. Plant‐Based Bioinsecticides for Mosquito Control: Impact on Insecticide Resistance and Disease Transmission // Insects. 2022. N 13. P. 162. https://doi.org/10.3390/insects13020162
96. Fanning P.D., Grieshop M.J., Isaacs R. Efficacy of biopesticides on spotted wing drosophila, Drosophila suzukii Matsumura in fall red raspberries // Journal of Applied Entomology. 2017. V. 142. N 1‐2. P. 26–32. https://doi.org/10.1111/jen.12462
97. Shahanaz M.R., Pathrose B., Chellappan M. A phagostimulant based bait composition for tobacco caterpillar Spodoptera Litura (Fabricius)(Lepidoptera: Noctuidae) // Journal of Tropical Agriculture. 2019. V. 57. N 1. P. 54–58.
98. Piazzoni M., Negri A., Brambilla E., Giussani L., Pitton S., Caccia S., Lenardi C. Biodegradable floating hydrogel baits as larvicide delivery systems against mosquitoes // Soft Matter. 2022. V. 18. N 34. P. 6443–6452. https://doi.org/10.1039/D2SM00889K
Рецензия
Для цитирования:
Хомяк А.И., Асатурова А.М. Составы биопестицидов для защиты сельскохозяйственных культур – современное состояние и перспективы (обзор). Юг России: экология, развитие. 2024;19(3):83-96. https://doi.org/10.18470/1992-1098-2024-3-8
For citation:
Homyak A.I., Asaturova A.M. Composition of biopesticides for crop protection – current state and prospects (review). South of Russia: ecology, development. 2024;19(3):83-96. (In Russ.) https://doi.org/10.18470/1992-1098-2024-3-8