The role of recombination variability to the formation of the population the HIV‐1 population circulating in the Primorsky Krai, Russia
https://doi.org/10.18470/1992-1098-2023-4-125-133
Abstract
Aim. To research the molecular epidemiological features of the territorial spread of HIV infection and the influence of recombination variability on the formation of the HIV‐1 population in the Primorsky Krai, Russia.
Materials and Methods. A comprehensive analysis of the molecular genetic characteristics of HIV‐1 and clinical‐epidemiological data of 127 HIV‐infected residents of Primorsky Krai was performed. The nucleotide sequences of the pol gene region encoding protease, reverse transcriptase and integrase of HIV‐1 were obtained by the sequencing of amplified fragments of the virus. Genotyping, phylogenetic, and mutational analyses were performed using specialised software resources.
Results. In the samples studied of HIV‐1 isolated in the Primorsky Krai, the dominance of HIV‐1 subtype A6 was detected as 40.9 %. The prevalence of subtype B viruses is high compared to other Russian regions – 29.9 %. The HIV‐1 subtype C was found in 6.3 % of the samples studied; circulating recombinant forms CRF63_02A6 – 6.3 %, CRF02_AG – 0.8 %. Unique viruses resulting from the recombination of HIV subtypes A6 and B, A6 and C, C and B were found in 15.7 % of cases (URF_A6C, URF_CB, URF_BA6). Of the 18 HIV‐1 URFs described, 14 were variants of URF_A6C (11 %). Analysis of the near full‐length genome (NFLG) of URF_A6C made it possible to find and describe a new HIV genovariant spreading in Primorye ‐ CRF157_A6C.
Conclusion. The analysis of HIV‐1 circulating in the Primorsky Krai confirmed that a specific molecular epidemic situation is developing in the region, which is characterized by active transmission of viruses not only of subtype A6, but also of subtypes B and C, which is not observed in other regions of Russia. For the first time in the Far East, a high frequency of HIV‐1 new unique recombinant forms occurrence has been described, some variants of which are beginning to spread among residents of the Primorsky Krai. An increase in the genetic heterogeneity of the viral population due to recombination variability of HIV is a negative prognostic factor for the territorial epidemic progress of HIV infection in the Far East.
About the Authors
M. R. HalikovRussian Federation
Maksim R. Halikov
Novosibirsk region
Koltsovo
V. E. Ekushov
Russian Federation
Vasily E. Ekushov
Novosibirsk region
Koltsovo
A. V. Totmenin
Russian Federation
Alexei V. Totmenin
Novosibirsk region
Koltsovo
L. G. Gotfrid
Russian Federation
Ludmila G. Gotfrid
Novosibirsk region
Koltsovo
L. F. Sklyar
Russian Federation
Lidiya F. Sklyar
Primorsky Krai
Vladivostok
N. P. Soloveva
Russian Federation
Natalia P. Soloveva
Primorsky Krai
Vladivostok
E. N. Serdtseva
Russian Federation
Elena N. Serdtseva
Primorsky Krai
Vladivostok
M. I. Shportova
Russian Federation
Marina I. Shportova
Primorsky Krai
Vladivostok
Zh. A. Martynchenko
Russian Federation
Zhanna A. Martynchenko
Primorsky Krai
Vladivostok
S. N. Beniova
Russian Federation
Svetlana N. Beniova
Primorsky Krai
Vladivostok
S. A. Ermolickaja
Russian Federation
Svetlana A. Ermolickaja
Primorsky Krai
Vladivostok
I. S. Gorelova
Russian Federation
Irina S. Gorelova
Primorsky Krai
Vladivostok
N. M. Gashnikova
Russian Federation
Natalya M. Gashnikova, Ph.D.
Novosibirsk region
Koltsovo
Tel. +79139405479
References
1. Désiré N., Cerutti L., Le Hingrat Q., et al. Characterization update of HIV‐1 M subtypes diversity and proposal for subtypes A and D sub‐subtypes reclassification. Retrovirology, 2018, vol. 15, no. 80. doi: 10.1186/s12977-018-0461-y
2. Burke D. S. Recombination in HIV: an important viral evolutionary strategy. Emerging infectious diseases, 1997, vol. 3, no. 3, p. 253. URL: https://pubmed.ncbi.nlm.nih.gov/9284369/
3. Robertson D.L., Anderson J.P., Bradac J.A., Carr J.K., Foley B., et al. HIV‐1 nomenclature proposal. Science, 2000, vol. 288, iss. 5463, p. 55. doi: 10.1126/science.288.5463.55d
4. Perrin L., Kaiser L., Yerly S. Travel and the spread of HIV‐1 genetic variants. The Lancet infectious diseases. 2003, vol. 3, no. 1, pp. 22–27.
5. Wainberg M.A., Brenner B.G. The Impact of HIV Genetic Polymorphisms and Subtype Differences on the Occurrence of Resistance to Antiretroviral Drugs. Molecular Biology International, 2012, vol. 2012. doi: 10.1155/2012/256982
6. Kerina D., Babill S.‐P., Muller F. HIV Diversity and Classification, Role in Transmission. Advances in Infectious Diseases, 2013, vol. 3, no. 2. doi: 10.4236/aid.2013.32022
7. Vidal N., Peeters M., Mulanga‐Kabeya C., Nzilambi N., Robertson D., et al. Unprecedented Degree of Human Immunodeficiency Virus Type 1 (HIV‐1) Group M Genetic Diversity in the Democratic Republic of Congo Suggests that the HIV‐1 Pandemic Originated in Central Africa. Journal of Virology, 2000, vol. 74, no. 22. doi: 10.1128/jvi.74.22.10498-10507.2000
8. Tongo M., Dorfman J.R., Martin D.P. High Degree of HIV‐1 Group M (HIV‐1M) Genetic Diversity within Circulating Recombinant Forms: Insight into the Early Events of HIV‐1M Evolution. Journal of Virology, 2016, vol. 90, no. 5. doi: 10.1128/JVI.02302-15
9. Hemelaar J., Elangovan R., Yun J., Dickson‐Tetteh L., Fleminger I., et al. Global and regional molecular epidemiology of HIV‐1, 1990–2015 : a systematic review, global survey, and trend analysis. The Lancet Infectious Diseases, 2019, vol. 19, iss. 2, pp. 143–155. doi: 10.1016/S1473-3099(18)30647-9
10. Abidi S.H., Aibekova L., Davlidova S., et al. Origin and evolution of HIV‐1 subtype A6. PLoS ONE, 2021, vol. 16, no. 12. doi: 10.1371/journal.pone.0260604
11. Schlösser M., Kartashev V., Mikkola V.H., et al. HIV‐1 Sub‐Subtype A6: Settings for Normalised Identification and Molecular Epidemiology in the Southern Federal District, Russia. Viruses, 2020, vol. 12, no. 4, p. 475. doi: 10.3390/v12040475
12. Baryshev P.B., Bogachev V.V., Gashnikova N.M. HIV‐1 genetic diversity in Russia: CRF63_02A1, a new HIV type 1 genetic variant spreading in Siberia. AIDS Res Hum Retroviruses, 2014, vol. 30, no. 6, pp. 592–597. doi: 10.1089/aid.2013.0196
13. Taenkova I.O., Trocenko O.E., Balahonceva L.A., Kotova V.O., Bazykina E.A. Analysis of the epidemiological situation of the spread of HIV infection in the Far Eastern Federal District for 2016–2020. Dal'nevostochnyi zhurnal infektsionnoi patologii [Far Eastern Journal of Infectious Pathology]. 2022, vol. 41, pp. 44–52. (In Russian)
14. Kotova V.O., Balakhontseva L.A., Bazykina E.A., Trotsenko O.E. Circulating recombinant forms of HIV‐1 in constituent entities of the Far Eastern Federal District. Dal'nevostochnyi zhurnal infektsionnoi patologii [Far Eastern Journal of Infectious Pathology]. 2021, vol. 40, pp. 79–87. (In Russian)
15. Sivay M.V., Totmenin A.V., Zyryanova D.P., Osipova I.P., Nalimova T.M., et al. Characterization of HIV‐1 Epidemic in Kyrgyzstan. Frontiers in Microbiology, 2021, vol. 12. doi: 10.3389/fmicb.2021.753675
16. Lebedev A., Pasechnik O., Ozhmegova E., Antonova A., Blokh A., et al. Prevalence and spatiotemporal dynamics of HIV‐1 Circulating Recombinant Form 03_AB (CRF03_AB) in the Former Soviet Union countries. PLOS ONE, 2021, vol. 16, no. 2. doi: 10.1371/journal.pone.0247611
17. Halikov M.R., Ekushov V.E., Totmenin A.V., Gashnikova N.M., et al. Identification of a novel HIV‐1 circulating recombinant form CRF157_A6C in Primorsky Territory, Russia. Journal of Infection, 2023. doi: 10.1016/j.jinf.2023.11.005
18. Kotova V.O., Balakhontseva L.A., Bazykina E.A., Trotsenko O.E. Rasprostranenie tsirkuliruyushchikh rekombinantnykh form VICh‐1 na territoriyakh Dal'nevostochnogo Federal'nogo Okruga [Distribution of circulation of recombinant forms of HIV‐1 in the territories of the Far Eastern Federal District]. Materialy mezhregional'noi konferentsii «Molekulyarnaya diagnostika i biobezopasnost' – 2023», Moskva, 27–28 aprelya 2023 [Proceedings of the interregional conference “Molecular diagnostics and biosafety – 2023”, Moscow, 27–28 April 2023]. Moscow, 2023, pp. 92–93. (In Russian)
19. Kotova V.O., Bazykina E.A., Balakhontseva L.A., Trotsenko O.E. Application of results of HIV‐1 molecular‐genetic typing in epidemiological practice in the Far Eastern Federal District of the Russian Federation. Dal'nevostochnyi zhurnal infektsionnoi patologii [Far Eastern Journal of Infectious Pathology]. 2020, vol. 38, pp. 69–79. (In Russian)
20. Kotova V.O., Trotsenko O.E., Balakhontseva L.A., Bazykina E.A. Molecular genetic characteristics of HIV‐1 variants isolated in the subjects of the Russian Far East. Problems of Virology, 2019, vol. 64, no. 2, pp. 79–89. (In Russian) DOI: 10.18821/0507-4088-2019-64-2-79-89
21. Baukova N.G., Karpova M.I., Kiseleva V.Yu., Krivoborod L.N., Novobritskaya Ya.V., Filonova E.A., Khramkova V.A. Sotsial'no‐ekonomicheskoe polozhenie Primorskogo kraya [Socio‐economic situation of Primorsky Krai]. 2023, p. 93. Available at: URL: https://25.rosstat.gov.ru/storage/mediabank/%D1%8F%D0%BD%D0%B2%D0%B0%D1%80%D1%8C-%D0%BE%D0%BA%D1%82%D1%8F%D0%B1%D1%80%D1%8C%202023.pdf (accessed 04. 12. 2023)
22. Los Alamos National Laboratory HIV Sequence Database. Available at: https://www.hiv.lanl.gov/content/sequence/HIV/mainpage.html (accessed 04. 12. 2023)
23. Tamura K., Stecher G., Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 2021, vol. 38, iss. 7, pp. 3022–3027. doi: 10.1093/molbev/msab120
24. Larsson A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics, 2014, vol. 30, iss. 22, pp. 3276–3278. doi: 10.1093/bioinformatics/btu531
25. Nguyen L.T., Schmidt H.A., Von Haeseler A., Minh B.Q. IQ‐TREE: a fast and effective stochastic algorithm for estimating maximum‐likelihood phylogenies. Molecular Biology and Evolution, 2015, vol. 32, iss. 1, pp. 268–274. doi: 10.1093/molbev/msu300
26. Siepel A.C., Halpern A.L., Macken C., Korber B.T. A computer program designed to screen rapidly for HIV type 1 intersubtype recombinant sequences. AIDS Research and Human Retroviruses, 1995, vol. 11, pp. 1413–1416. doi: 10.1089/aid.1995.11.1413
27. Schultz A.‐K., Zhang M., Bulla I., Leitner T., Korber B., Morgenstern B., Stanke M. jpHMM: Improving the reliability of recombination prediction in HIV‐1. Nucleic Acids Research, 2009, vol. 37, iss. 2, pp. 647–665. doi: 10.1093/nar/gkp371
28. Martin D.P., Posada D., Crandall K.A., Williamson C. A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Research and Human Retroviruses, 2005, vol. 21, no. 1, pp. 98–102. doi: 10.1089/aid.2005.21.98
29. Neogi U., Haggblom A., Santacatterina M., Bratt G., Gisslen M., et al. Temporal Trends in the Swedish HIV‐1 Epidemic: Increase in Non‐B Subtypes and Recombinant Forms over Three Decades. PLoS ONE, 2014, vol. 9, no. 6. doi: 10.1371/journal.pone.0099390
30. Taenkova I.O., Balahonceva L.A., Bazykina E.A., Kotova V.O., Trocenko O.E. Epidemiological situation of HIV infection in the Far Eastern Federal District at the present stage (brief analysis for 2022). Dal'nevostochnyi zhurnal infektsionnoi patologii [Far Eastern Journal of Infectious Pathology]. 2023, vol. 44, pp. 53–57. (In Russian)
Review
For citations:
Halikov M.R., Ekushov V.E., Totmenin A.V., Gotfrid L.G., Sklyar L.F., Soloveva N.P., Serdtseva E.N., Shportova M.I., Martynchenko Zh.A., Beniova S.N., Ermolickaja S.A., Gorelova I.S., Gashnikova N.M. The role of recombination variability to the formation of the population the HIV‐1 population circulating in the Primorsky Krai, Russia. South of Russia: ecology, development. 2023;18(4):125-133. (In Russ.) https://doi.org/10.18470/1992-1098-2023-4-125-133