Preview

South of Russia: ecology, development

Advanced search

Study of the effect of bacteria of the genus Pseudomonas on the growth and toxin production of the fungus Fusarium graminearum in vitro

https://doi.org/10.18470/1992-1098-2023-4-104-113

Abstract

   Aim. To study the potential of bacteria strains P. chlororaphis BZR 245‐F and Pseudomonas sp. BZR 523‐2 to inhibit the growth of Fusarium ear blight pathogens through the example of the fungus F. graminearum and to reduce the accumulation of deoxynivalenol (DON) and zearalenone (ZEN) in vitro.

   Materials and Methods. Antifungal metabolites of Pseudomonas bacteria were analysed by thin layer chromatography and bioautography. An experiment on the effect of liquid culture and supernatant of bacteria on the growth and toxin production of the fungus F. graminearum in vitro was carried out on wheat grain. Analysis of grain for mycotoxins was carried out by HPLC‐HRMS.

   Results. The ability of strains P. chlororaphis BZR 245‐F and Pseudomonas sp. BZR 523‐2 to produce antifungal metabolites was found, while inhibiting the growth of the fungus F. graminearum 60318 in vitro. The content of DON decreases both under the action of the liquid culture and supernatant of P. chlororaphis BZR 245‐F bacteria by 60 % and 70 %, respectively, and the liquid culture and supernatant of Pseudomonas sp. BZR 523‐2 bacteria by 75 % and 90 %, respectively. The accumulation of ZEN is also significantly suppressed under the influence of liquid cultures and supernatants of bacterial strains. The amount of ZEN decreases under the influence of liquid culture and supernatant of P. chlororaphis BZR 245‐F bacteria by 80 % and 95 %, respectively. Liquid culture and supernatant of Pseudomonas sp. BZR 523‐2 bacteria inhibited the accumulation of ZEN by 60 % and 84 %, respectively.

   Conclusion. The results obtained through the study of the effect of liquid cultures and supernatants of P. chlororaphis BZR 245‐F and Pseudomonas sp. BZR 523‐2 strains on the growth and toxin production of the fungus F. graminearum 60318 in vitro allow us to consider these strains as potential producers of effective biofungicides against toxin‐producing fungi. Further studies of these bacterial strains in vitro and in vivo on plants are needed.

About the Authors

V. F. Tolkach
Federal Scientific Centre for Biological Plant Protection
Russian Federation

Valeria V. Allahverdyan, Junior Researcher

Laboratory of Microbiological Plant Protection

350039

p/o‐39

Krasnodar



Yu. G. Volkov
Federal Scientific Centre for Biological Plant Protection
Russian Federation

Tatiana M. Sidorova

Krasnodar



N. N. Kakareka
Kuban State University
Russian Federation

Azamat Z. Temerdashev

Krasnodar



M. R. Aliev
Federal Scientific Centre for Biological Plant Protection
Russian Federation

Anzhela M. Asaturova

Krasnodar



M. Yu. Shchelkanov
Federal Scientific Centre for Biological Plant Protection
Russian Federation

Natalia S. Tomashevich

Krasnodar



References

1. Khan M.K., Pandey A., Athar T., Choudhary S., Deval R., Gezgin S., Hamurcu M., Topal A., Atmaca E., Santos P.A., Makbule Rumeysa Omay M.R., Suslu H., Gulcan K., Inanc M., Akkaya M.S., Kahraman A., Thomas G. Fusarium head blight in wheat: contemporary status and molecular approaches. Biotech, 2020, vol. 10, pp. 160–172. doi: 10.1007/s13205-020-2158-x

2. . Fusarium head blight, mycotoxins and strategies for their reduction. Agronomy, 2020, vol. 10(4), pp. 497–509. doi: 10.3390/agronomy10040509

3. Miedaner T., Gwiazdowska D., Waśkiewicz A. Editorial: Management of Fusarium species and their mycotoxins in cereal food and feed. Frontiers in Microbiology, 2017, vol. 8, pp. 1543. doi: 10.3389/fmicb.2017.01543

4. Zakharenko V.A. The use of pesticides in the agricultural sector of Russia in the context of the development of global markets for plant protection products. Agrochemistry, 2020, no. 3, pp. 43–48. (In Russian) doi: 10.31857/S000218812003014X

5. Naz R., Khushhal S., Asif T., Mubeen S., Saranraj P., Sayyed R.Z., Uarrota V.G., eds. Inhibition of bacterial and fungal phytopathogens through volatile organic compounds produced by Pseudomonas sp. Secondary metabolites and volatiles of PGPR in plant‐growth promotion. Springer, 2022, vol. 7, pp. 56–69. doi: 10.1007/978-3-031-07559-9_6

6. Sidorova T.M., Allakhverdyan V.V., Asaturova A.M. Rol' bakterii roda Pseudomonas i ikh metabolitov v biokontrole fitopatogennykh ugroz. Agrokhimiya [Agrochemistry]. 2023, vol. 5, pp. 94–104. (In Russian) URL: https://elibrary.ru/urytyx?ysclid=lr6apidgxi152065507

7. Zboralski А., Saadia Н., Novinscak А., Filion М. Interplay between arabidopsis thaliana genotype, plant growth and rhizosphere colonization by phytobeneficial phenazine‐producing Pseudomonas chlororaphis. Microorganisms, 2022, vol. 10, pp. 66–81. doi: 10.3390/microorganisms10030660

8. Thacharodi A., Priyadharshini R., Karthikeyan G., Jeganathan C., Reghu A.P., Pugazhendhi A. Extraction, purification and characterization of phenazine from Pseudomonas aeruginosa isolate of wastewater sources: a panacea towards clinical pathogens. Applied Nanoscience, 2021, vol. 16. URL: https://link.springer.com/article/10.1007/s13204-021-01944-y

9. Zhao F., Wang B., Yuan M., Ren S. Comparative study on antimicrobial activity of monorhamnolipid and di‐rhamnolipid and exploration of cost‐effective antimicrobial agents for agricultural applications. Microb Cell Fact, 2022, vol. 21, pp. 221–237. doi: 10.1186/s12934-022-01950-x

10. Geudens N., Martins J.C. Cyclic lipopeptides from Pseudomonas spp.‐biological swiss army knives. Frontiers in Microbiology, 2018, vol. 9. doi: 10.3389/fmicb.2018.01867

11. Daura‐Pich O., Hernández I., Pinyol‐Escala L., Lara J.M., Martínez‐Servat S., Fernández C., López‐García B. No antibiotic and toxic metabolites produced by the biocontrol agent Pseudomonas putida strain B2017. Microbiology Letters, 2020, vol. 3, pp. 367–386. doi: 10.1093/femsle/fnaa075

12. Palazzini J.M., Alberione E., Torres A., Donat C., Köhl J., Chulze S. Biological control of Fusarium graminearum sensu stricto, causal agent of Fusarium Head Blight of wheat, using formulated antagonists under field conditions in Argentina. Biological Control, 2016, vol. 94, pp. 56–61. doi: 10.1016/j.biocontrol.2015.12.009

13. Liang N., Charron J.B., Jabaji S. Comparative transcriptome analysis reveals the biocontrol mechanism of Bacillus velezensis E68 against Fusarium gramin DAOMC 180378, the causal agent of Fusarium head blight. PLoS ONE, 2023, vol. 18(1), article id: e0277983. doi: 10.1371/journal.pone.0277983

14. Chen A‐H., Tofazzal I., Zhong‐H. M.A. An integrated pest management program for managing fusarium head blight disease in cereals. Journal of integrative Agriculture, 2022, vol. 21(12), pp. 3434–3444. doi: 10.1016/j.jia.2022.08.053

15. Kumari S., Khanna V., Sharma N. Characterization and biological evaluation of phenazine produced by antagonistic pseudomonads against Fusarium oxysporum f. sp. ciceris. International Journal of Pest Management, 2022, vol. 3, pp. 1–14. doi: 10.1080/09670874.2022.2084176

16. Rathore R., Vakharia D.N., Rathore D.S. In vitro screening of different Pseudomonas fluorescens isolates to study lytic enzyme production and growth inhibition during antagonism of Fusarium oxysporum f. sp. cummi, wilt causing pathogen of cumin. Egyptian Journal of Biological Pest Control, 2020, vol. 30, pp. 57–83. URL: https://ejbpc.springeropen.com/articles/10.1186/s41938-020-00259-4

17. Huang R., Feng Z., Chi X., Sun X., Lu Y., Zhang B., Lu R., Luo W., Wang Y., Miao J., Ge Y. Pyrrolnitrin is more essential than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium graminearum. Microbiological Reseapch, 2018, vol. 215, pp. 55–64. doi: 10.1016/j.micres.2018.06.008

18. Sokolov G.D., Glinushkin A.P. Antagonisty fitopatogennogo griba Fusarium graminearum. Mikologiya i fitopatologiya [Mycology and phytopathology]. 2017, pp. 191–201. (In Russian)

19. Gagkayeva T.Y., Garilova O.P., Nikolayev I.N., Laptev T.Yu. Possibilities of biodegradation of mycotoxins produced by fungi of the genus Fusarium. Mikologiya segodnya [Mycology today]. 2016, 238 p. (In Russian)

20. Singh P., Singh R.K., Zhou Y., Wang J., Jiang Y., Shen N., Wang Y., Lifang Yang L., Jiang M. Unlocking the strength of plant growth promoting Pseudomonas improving crop productivity in normal and challenging environments: a review. Journal of Plant Interactions, 2022, vol. 17, pp. 220–238. doi: 10.1080/17429145.2022.2029963

21. Feizollahi E., Roopesh M.S. Mechanisms of deoxynivalenol (DON) degradation during different treatments: a review. Critical Reviews in Food Science and Nutrition, 2021, vol. 62, pp. 5903–5924. doi: 10.1080/10408398.2021.1895056

22. Pinto A.C.S.M., De Pierri C.R., Evangelista A.G., Gomes A.S.d.L.P.B., Luciano F.B. Deoxynivalenol: Toxicology, Degradation by Bacteria, and Phylogenetic Analysis. Toxins, 2022, vol. 14, pp. 90–114. doi: 10.3390/toxins14020090

23. Tian Y., Zhang D., Cai P., Lin H., Ying H., Hu Q.‐N., Wu A. Elemination of Fusarium mycotoxin desoxynivalenol (DON) via microbial and enzymatic strategies: current status and future perspectives. Trends in foodscience & technology, 2022, vol. 124, pp. 96–107. doi: 10.1016/j.tifs.2022.04.002

24. Chen Y., Wang J., Yang N., Wen Z., Sun X., Chai Y., Ma Z. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nature communications, 2018, vol. 9, p. 3429. doi: 10.1038/s41467-018-05683-7

25. Shi K., Yang P., Li J., Wu H., Li K., Guan S. Biocontrol of Fusarium graminearum growth and deoxynivalenol production in wheat grains using bacterial antagonists. International journal of environmental research and public health, 2014, vol. 11(1), pp. 1094–1105. doi: 10.3390/ijerph110101094

26. Sidorova T.M., Asaturova A.M., Khomyak A.I., Tomashevich N.S. Isolation and characterization of antifungal metabolites of Bacillus subtilis BZR 336g and Bacillus subtilis BZR 517 strains by a modified bioautography method. Agricultural Biology, 2019, vol. 54, pp. 178–185. doi: 10.15389/agrobiology.2019.1.178rus

27. Trineeva O.V. Methods and prospects for converting mycotoxins into medicinal plant sources. Razrabotka i registratsiya lekarstvennykh sredstv [Development and registration of medicines]. 2020, vol. 9, pp. 67–109. (In Russian) doi: 10.33380/2305-2066-2020-9-3-67-109

28. Muthukumar A., Suthin Ray T., Prabhukarthikeyan S.R., Naveen Kumar R., Keerthana U. New and future developments in microbial biotechnology and bioengineering. Chapter 6 – Pseudomonas and Bacillus: a biological tool for crop protection. Sustaible agriculture: advances in microbe – based biostimulants, 2022, pp. 145–158. URL: https://shop.elsevier.com/books/new-and-future-developments-in-microbial-biotechnology-and-bioengineering/singh/978-0-323-85577-8

29. Serafim B., Bernardino A.R., Freitas F., Torres C.A.V. Recent Developments in the Biological Activities, Bioproduction, and Applications of Pseudomonas spp. phenazines. Molecules, 2023, vol. 28(3), p. 1368. doi: 10.3390/molecules28031368

30. DeBritto S., Gajbar T.D., Satapute P. et al. Isolation and characterization of nutrient dependent pyocyanin from Pseudomonas aeruginosa and its dye and agrochemical properties. Scientific Reports, 2020, pp. 15–32. doi: 10.1038/s41598-020-58335-6


Review

For citations:


Tolkach V.F., Volkov Yu.G., Kakareka N.N., Aliev M.R., Shchelkanov M.Yu. Study of the effect of bacteria of the genus Pseudomonas on the growth and toxin production of the fungus Fusarium graminearum in vitro. South of Russia: ecology, development. 2023;18(4):104-113. (In Russ.) https://doi.org/10.18470/1992-1098-2023-4-104-113

Views: 495


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1992-1098 (Print)
ISSN 2413-0958 (Online)