A method for obtaining aqueous and dry ethanol extracts of grass (a mixture of flowers with leaves) and a stalk of St. John's wort (Hypericum perforatum L.) with inhibitory activity on the replication of the SARS‐CoV‐2 coronavirus in vitro
https://doi.org/10.18470/1992-1098-2023-3-103-117
Abstract
Aim. In vitro evaluation of the inhibitory activity of aqueous extracts and dry ethanol extracts of St John's wort (Hypericum perforatum L.) on the replication of SARS-CoV-2 according to three experimental schemes – direct inactivation (neutralisation) of the virus as well as "prevention" and "treatment" of cells.
Materials and Methods. The laboratory strain SARS-CoV-2/human/RUS/Nsk-FRCFTM-1/2020 was passed on Vero cell culture. Water extracts and dry ethanol extracts of parts of H. perforatum L. collected during the flowering period in the Novosibirsk region were prepared. Dry extracts were dissolved in DMSO. Comparison samples are dry ethanol extracts of chaga, cloves and black tea.
Results. It is shown that the aqueous extract of grass (a mixture of flowers with leaves) of H. perforatum L. with direct inactivation of the virus it is active in dilution of 1/4096. For the dry ethanol extract of the herb H. perforatum L., 50 % effective concentrations (EC50) were found equal to 2.44±0.87; 8.79±1.91 and 14.65±1.91 μg/ml respectively with direct inactivation as well as according to the "preventive" scheme and with the "treatment" of cells. Taking into account cytotoxicity, as well as in comparison with control samples, the values of selective indices (SI50) of the studied herbal preparations during direct inactivation were higher than with other experimental schemes and were distributed as follows (in descending order): 204.92; 153.68; 115.27; 32.01 and 21.33 for dry ethanol extracts of black tea from India, cloves, herbs, a mixture of flowers with leaves, of H. perforatum, chaga and the stems of H. perforatum respectively. The HPLC method has shown that the ethanol extract of the herb H. perforatum L. contains a greater amount of flavonoids than the extract of stems. Nevertheless, antiviral activity was also detected for the extract of stems of this plant with EC50 equal to 14.65±1.91; 78.13±20.05 and 117.19±15.31 μg/ml (according to three experimental schemes), respectively.
Conclusion. For the preparation of antiviral drugs the whole plant of H. perforatum L., including stems, can be used as raw materials.
About the Authors
Е. I. КаzachinskaiaRussian Federation
Еlena I. Каzachinskaia, Doctor of Biology, Leading Researcher, Research Institute of Virology
Prospekt Koltsovo 32‐1, Novosibirsk, Novosibirskiy region, 630559
Теl. +79095307441
Competing Interests:
The authors declare no conflict of interest.
Yu. V. Коnonova
Russian Federation
Yulia V. Коnonova
Novosibirsk
Competing Interests:
The authors declare no conflict of interest.
A. V. Ivanova
Russian Federation
Alla V. Ivanоva
Novosibirsk
Competing Interests:
The authors declare no conflict of interest.
L. N. Zibareva
Russian Federation
Larisa N. Zibareva
Novosibirsk
Competing Interests:
The authors declare no conflict of interest.
А. А. Chepurnov
Russian Federation
Аlexander А. Chepurnov
Novosibirsk
Competing Interests:
The authors declare no conflict of interest.
V. V. Romanyuk
Russian Federation
Vladimir V. Romanyuk
Novosibirsk
Competing Interests:
The authors declare no conflict of interest.
A. A. Biibolatov
Russian Federation
Apendi A. Biibolatov
Makhachkala
Competing Interests:
The authors declare no conflict of interest.
М. А. Gulyaeva
Russian Federation
Мarina А. Gulyaeva
Novosibirsk
Competing Interests:
The authors declare no conflict of interest.
А. М. Shestopalov
Russian Federation
Аlexander М. Shestopalov
Novosibirsk
Makhachkala
Competing Interests:
The authors declare no conflict of interest.
References
1. WHO website. Available at: https://www.who.int/emergencies/diseases/novelcoronavirus-2019/situation-reports (accessed 12.01.2023)
2. Ning Q., Wu D., Wang X., Xi D., Chen T., Chen G., Wang H., Lu H., Wang M., Zhu L. et al. The mechanism underlying extrapulmonary complications of the coronavirus disease 2019 and its therapeutic implication. Signal Transduct Target Therapy, 2022, vol. 7, article number: 57. DOI: 10.1038/s41392-022-00907-1
3. Harvey W.T., Carabelli A.M., Jackson B. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol., 2021, vol. 19, no. 7, pp. 409–424. DOI: 10.1038/s41579-021-00573-0
4. Chuang S.-T., Buchwald P. Broad-Spectrum Small-Molecule Inhibitors of the SARS-CoV-2 Spike-ACE2 Protein-Protein Interaction from a Chemical Space of Privileged Protein Binders. Pharmaceuticals (Basel), 2022, vol. 15, no. 9, article id: 1084. DOI: 10.3390/ph15091084
5. Liu H., Ye F., Sun Q., Liang H., Li C., Li S., Lu R., Huang B., Tan W., Lai L. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro CoV-2. J Enzyme Inhibition Medicinal Chemistry, 2021, vol. 36, no. 1, pp. 497–503. DOI:10.1080/14756366.2021.1873977
6. García-Lledó A., Gómez-Pavón J., Castillo J.G.D., Hernández-Sampelayo T., Martín-Delgado M.C., Sánchez F.J.M., Martínez-Sellés M., García J.M.M., Guillén S.M., Rodríguez-Artalejo F.J., Ruiz-Galiana J., Cantón R., Ramos P.D.L., García-Botella A., Bouza E Bouza E..Pharmacological treatment of COVID-19: an opinion paper. Revista Española de Quimioterapia, 2022, vol. 35, no. 2, pp. 115–130. DOI: 10.37201/req/158.2021
7. Abdoli A., Falahi S., Kenarkoohi A. COVID-19-associated opportunistic infections: a snapshot on the current reports. Clinical and Experimental Medicine, 2021, vol. 22, no. 3, pp. 327–346. DOI: 10.1007/s10238-021-00751-7
8. Seeßle J., Hippchen T., Schnitzler P., Gsenger J., Giese T., Merle U. High rate of HSV-1 reactivation in invasively ventilated COVID-19 patients: Immunological findings. PLoS ONE, 2021, vol. 16, no. 7, article id: e0254129. DOI: 10.1371/journal.pone.0254129
9. Franceschini E., Cozzi-Lepri A., Santoro A., Bacca E., Lancellotti G., Menozzi M., Gennari W., Meschiari M., Bedini A., Orlando G. et al. Herpes Simplex Virus Re-Activation in Patients with SARS-CoV-2 Pneumonia: A Prospective, Observational Study. Microorganisms, 2021, vol. 9, no. 9, article number: 1896. DOI: 10.3390/microorganisms9091896
10. Murgia F., Fiamma M., Serra S., Marras G., Argiolas R., Mattana C., Mattu M.G., Garau M. C., Doneddu S., Olla S. et al. The impact of the secondary infections in ICU patients affected by COVID-19 during three different phases of the SARS-CoV-2 pandemic. Clin Exp Med., 2022, vol. 23, pp. 1251–1263. DOI: 10.1007/s10238-022-00959-1
11. Wan D., Du T., Hong W., Chen L., Que H., Lu S., Peng X. Neurological complications and infection mechanism of SARSCoV-2. Signal Transduction and Targeted Therapy, 2021, no. 6, article number: 406. DOI: 10.1038/s41392-021-00818-7
12. Nawrot J., Gornowicz-Porowska J., Budzianowski J., Nowak G., Schroeder G., Kurczewska J. Medicinal Herbs in the Relief of Neurological, Cardiovascular, and Respiratory Symptoms after COVID-19 Infection A Literature Review. Cells, 2022, vol. 11, no. 12, article number: 1897. DOI: 10.3390/cells11121897
13. Premraj L., Kannapadi N.V., Briggs J., Seal S.M., Battaglini D., Fanning J., Suen J., Robba C., Fraser J., Cho S.-M. Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: A meta-analysis. Journal of the Neurological Sciences, 2022, vol. 434, article id: 120162. DOI: 10.1016/j.jns.2022.120162
14. Chippa V., Aleem A., Anjum F. Book: Post Acute Coronavirus (COVID-19) Syndrome. In: StatPearls [Internet]. 2022. PMID: 34033370. Bookshelf id: NBK570608
15. Soleymani S., Naghizadeh A., Karimi M., Zarei A., Mardi R., Kordafshari G., Esmaealzadeh N., Zargaran A. COVID-19: General Strategies for Herbal Therapies. Journal of Evidence- Based Integrative Medicine, 2022, vol. 27. DOI: 10.1177/2515690X211053641
16. Calderon M., Gysin G., Gujjar A., McMaster A., King L., Comandé D., Hunter E., Payne B. Bacterial co-infection and antibiotic stewardship in patients with COVID-19: a systematic review and meta-analysis. BMC Infectious Diseases, 2023, vol. 23, article number: 14. DOI: 10.1186/s12879-022-07942-x
17. Bonnet U., Juckel G. COVID-19 Outcomes: Does the Use of Psychotropic Drugs Make a Difference? Accumulating Evidence of a Beneficial Effect of Antidepressants-A Scoping Review. J Clin Psychopharmacol, 2022, vol. 42, no. 3, pp. 284–292. DOI:10.1097/JCP.0000000000001543
18. Buza V., Niculae M., Hanganu D., Pall E., Burtescu R.F., Olah N.-K., Matei-Lațiu M.-C., Vlasiuc I., Iozon I., Szakacs A.R., Ielciu I., Ștefănuț L.C. Biological Activities and Chemical Profile of Gentiana asclepiadea and Inula helenium Ethanolic Extracts. Molecules, 2022, vol. 27, iss. 11. DOI: 10.3390/molecules27113560
19. Owen L., Laird K., Shivkumar M. Antiviral plant-derived natural products to combat RNA viruses: Targets throughout the viral life cycle. Letters in Applied Microbiology, 2022, vol. 75, no. 3, pp. 476–499. DOI: 10.1111/lam.13637
20. Garg P., Alambayan J., Garg V. Herbal Approaches in the Management of Mental Depression. CNS Neurol Disord Drug Targets, 2022, vol. 22, no. 1, pp. 98–124. DOI: 10.2174/1871527321666220128091408
21. Galeotti N. Hypericum perforatum (St John's wort) beyond depression: A therapeutic perspective for pain conditions. Journal of Ethnopharmacology, 2017, vol. 200, pp. 136–146. DOI: 10.1016/j.jep.2017.02.016
22. Vuko E., Dunkić V., Ruščić M., Nazlić M., Mandić N., Soldo B., Šprung M., Fredotović Ž. Chemical Composition and New Biological Activities of Essential Oil and Hydrosol of Hypericum perforatum L. ssp. veronense (Schrank) H. Lindb. Plants, 2021, vol. 10, no. 5. DOI: 10.3390/plants10051014
23. Rizzo P., Altschmied L., Ravindran B.M., Rutten T., D'Auria J.C. The Biochemical and Genetic Basis for the Biosynthesis of Bioactive Compounds in Hypericum Perforatum L., One of the Largest Medicinal Crops in Europe. Genes, 2020, vol. 11, no. 10. DOI: 10.3390/genes11101210
24. Prince A.M., Pascual D., Meruelo D., Liebes L., Mazur Y., Dubovi E., Mandel M., Lavie G. Strategies for evaluation of enveloped virus inactivation in red cell concentrates using hypericin. Photochem Photobiology, 2000, vol. 71, no. 2, pp. 188–195. DOI: 10.1562/0031-8655(2000)071<0188:sfeoev>2.0.co;2
25. Shih C.-M., Wu C.-H., Wu W.-J., Hsiao Y.-M., Ko J.-L.. Hypericin inhibits hepatitis C virus replication via deacetylation and down-regulation of heme oxygenase-1. Phytomedicine, 2018, vol. 46, pp. 193–198. DOI: 10.1016/j.phymed.2017.08.009
26. Pu X., Liang J., Wang X., Xu T., Hua L., Shang R. Antiinfluenza A virus effect of Hypericum perforatum L. extract. Virologica sinica, 2009, vol. 24, pp. 19–27. DOI:10.1007/s12250-009-2983-x
27. Du X., Xiao R, Fu H., Yuan Z., Zhang W., Yin L., He C., Li C., Zhou J., Liu G., Shu G., Chen Z. Hypericin-loaded graphene oxide protects ducks against a novel duck reovirus. Mater. Sci. Eng. C. Biol. Appl., 2019, vol. 105, article id: 110052. DOI: 10.1016/j.msec.2019.110052
28. Chen H., Feng R., Muhammad I., Abbas G., Zhang Y., Ren Y., Huang X., Zhang R., Diao L., Wang X., et al. Protective effects of hypericin against infectious bronchitis virus induced apoptosis and reactive oxygen species in chicken embryo kidney cells. Poult. Sci., 2019, vol. 98, pp. 6367–6377. DOI: 10.3382/ps/pez465
29. Chen H., Muhammad I., Zhang Y., Ren Y., Zhang R., Huang X., Diao L., Liu H., Li X., Sun X., Abbas G., Li G. Antiviral Activity Against Infectious Bronchitis Virus and Bioactive Components of Hypericum perforatum L. Front. Pharmacol., 2019, vol. 10. DOI: 10.3389/fphar.2019.01272
30. Zhang Y., Chen H., Zou M., Oerlemans R., Shao C., Ren Y., Zhang R., Huang X., Li G., Cong Y. Hypericin Inhibit Alpha-Coronavirus Replication by Targeting 3CL Protease. Viruses, 2021, vol. 13, no. 9. DOI: 10.3390/v13091825
31. Islam R., Parves M.R., Paul A.S., Uddin N., Rahman M.S., Mamun A.A., Hossain M.N., Ali M.A., Halim M.A. A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. J. Biomol. Struct. Dyn., 2021, vol. 39, no. 9, pp. 3213–3224. DOI: 10.1080/07391102.2020.1761883
32. Shivanika C., Kumar D.S., Ragunathan V., Tiwari P., Sumitha A., Devi B.P. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. J Biomol Struct Dyn., 2022, vol. 40, no. 2, pp. 585–611. DOI: 10.1080/07391102.2020.1815584
33. Saravanan K.M., Zhang H., Senthil R., Vijayakumar K.K., Sounderrajan V. Wei Y., Shakila H. Structural basis for the inhibition of SARS-CoV2 main protease by Indian medicinal plant-derived antiviral compounds. J. Biomol. Struct. Dyn., 2022, vol. 40, no. 5, pp. 1970–1978. DOI: 10.1080/07391102.2020.1834457
34. da Rocha Matos A., Caetano B.C., de Almeida Filho J.L., de Carvalho Martins J.S.C., de Oliveira M.G.P., das Chagas Sousa T., Horta M.A.P., Siqueira M.M., Fernandez J.H. Identification of Hypericin as a Candidate Repurposed Therapeutic Agent for COVID-19 and Its Potential Anti-SARS-CoV-2 Activity. Front. Microbiol., 2022, vol. 13, article id: 828984. DOI: 10.3389/fmicb.2022.828984
35. Mohamed F.F., Anhlan D., Schöfbänker M., Schreiber A., Classen N., Hensel A., Hempel G., Scholz W., Kühn J., Hrincius E.R., Ludwig S. Hypericum perforatum and Its Ingredients Hypericin and Pseudohypericin Demonstrate an Antiviral Activity against SARS-CoV-2. Pharmaceuticals (Basel), 2022, vol. 15, no. 5. DOI: 10.3390/ph1505053
36. Каzachinskaia Е.I., Romanova V.D., Ivanоva A.V., Chepurnov А.А., Коnonova Y.V., Shaulo D.N., Romanyuk V.V., Shestopalov А.М. Inhibitory activity of dry ethanol extracts of Artemisia spp. on SARS-CoV-2 replication in vitro. South of Russia: ecology, development, 2022, vol. 17, no. 4, pp. 111–129. DOI: 10.18470/1992-1098-2-22-4-111-129 (In Russian)
37. Chepurnov A.A., Sharshov K.A., Kazachinskaya E.I., Kononova Yu.V., Kazachkova E.A., Khripko O.P., Yurchenko K.S., Alekseev A.Yu., Voevoda M.I., Shestopalov A.M. Antigenic properties of sARs-CoV-2/human/RUs/nsk-FRCFtM-1/2020 coronavirus isolate from a patient in Novosibirsk. Journal Infectology, 2020, vol. 12, no. 3, pp. 42–50. DOI:10.22625/2072-6732-2020-12-3-42-50. (In Russian)
38. Каzachinskaia Е.I., Chepurnov А.А., Коnonova Y.V., Shelemba А.А., Romanyuk V., Magomedov M.G., Shestopalov А.М. Inhibitory activity of tea compositions and their constituent ingredients on SARS-COV-2 replication in vitro. South of Russia: ecology, development, 2022, vol. 17, no. 2, pp. 76–90. DOI: 10.18470/1992-1098-2022-2-76-90 (In Russian)
39. Kazachinskaia E.I., Chepurnov A.A., Shcherbakov D.N, Kononova Yu.V., Shanshin D.V., Romanova V.D., Khripko O.P., Saroyan T.A., Gulyaeva M.A., Voevoda M.I., Shestopalov A.M. IgG Study of Blood Sera of Patients with COVID-19. Patogens, 2021, vol. 10, no. 11. DOI:10.3390/patogens10111421
40. Mhatre S., Naik S., Patravale V. A molecular docking study of EGCG and theaflavin digallate with the druggable targets of SARS-CoV-2. Comput. Biol. Med., 2021, no. 129. DOI: 10.1016/j.compbiomed.2020.104137
41. Mhatre S., Srivastava T., Naik S., Patravale V. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review. Phytomedicine, 2021, vol. 85. DOI: 10.1016/j.phymed.2020.153286
42. Ishimoto K., Hatanaka N., Otani S., Maeda S., Xu B., Yasugi M., Moore J.E., Suzuki M., Nakagawa S., Yamasaki S. Tea crude extracts effectively inactivate severe acute respiratory syndrome coronavirus 2. Lett. Appl. Microbiol., 2022, vol. 74, no. 1, pp. 2–7. DOI:10.1111/lam.13591
43. Shoaib S., Ansari M.A., Kandasamy G., Vasudevan R., Hani U., Chauhan W., Alhumaidi M.S., Altammar K.A., Azmi S., Ahmad W., Wahab S., Islam N. An Attention towards the Prophylactic and Therapeutic Options of Phytochemicals for SARS-CoV-2: A Molecular Insight. Molecules, 2023, vol. 28, no. 2. DOI: 10.3390/molecules28020795
44. Swargiary A., Mahmud S., Saleh M.A. Screening of phytochemicals as potent inhibitor of 3-chymotrypsin and papain-like proteases of SARS-CoV-2: An in silico approach to combat COVID-19. J. Biomol. Struct. Dyn., 2022, vol. 40, pp. 2067–2081. DOI: 10.1080/07391102.2020.1835729
45. Jena A.B., Kanungo N., Nayak V., Chainy G.B.N., Dandapat J. Catechin and curcumin interact with S protein of SARS-CoV-2 and ACE2 of human cell membrane: Insights from computational studies. Sci. Rep., 2021, article number: 2043. DOI: 10.1038/s41598-021-81462-7
46. Nguyen T., Jung J.-H., Kim M.-K., Lim S., Choi J.-M., Chung B., Kim D.-W., Kim D. The inhibitory effects of plant derivate polyphenols on the main protease of SARS coronavirus 2 and their structure–activity relationship. Molecules, 2021, vol. 26. DOI: 10.3390/molecules26071924
47. Clementi N., Scagnolari C., D’Amore A., Palombi F., Criscuolo E., Frasca F., Pierangeli A., Mancini N., Antonelli G., Clementi M., et al. Naringenin is a powerful inhibitor of SARSCoV-2 infection in vitro. Pharmacol. Res., 2021, vol. 163. DOI: 10.1016/j.phrs.2020.105255
48. Jupudi S., Rajala S., Gaddam N.R., Swaminathan G., Peesa J.P., Rajagopal K. Azam M.A. Revisiting the South Indian traditional plants against several targets of SARS-CoV-2 - An In silico approach. Curr. Comput.-Aided Drug Des., 2022. DOI: 10.2174/1573409919666221230105758
49. Yi Y., Zhang M., Xue H., Yu R., Bao Y.-O., Kuang Y., Chai Y., Ma W., Wang J., Shi X.et al. Schaftoside inhibits 3CLpro and PLpro of SARS-CoV-2 virus and regulates immune response and inflammation of host cells for the treatment of COVID-19. Acta Pharm. Sin. B, 2022, vol. 12, no. 11, pp. 4154–4164. DOI: 10.1016/j.apsb.2022.07.017
50. Ji J., Wang Z., Sun W., Li Z., Cai H., Zhao E., Cui H. Effects of Cynaroside on Cell Proliferation, Apoptosis, Migration and Invasion though the MET/AKT/mTOR Axis in Gastric Cancer. Int. J. Mol. Sci., 2021, vol. 22, no. 22. DOI: 10.3390/ijms222212125
51. Moezzi M.S. Comprehensive in silico screening of flavonoids against SARS-CoV-2 main protease. J. Biomol. Struct. Dyn., 2022, pp. 1–14. DOI: 10.1080/07391102.2022.2142297
52. Masiello P., Novelli M., Beffy P., Menegazzi M. Can Hypericum perforatum (SJW) prevent cytokine storm in COVID-19 patients? Phytother. Res., 2020, vol. 34, no. 7, pp. 1471–1473. DOI: 10.1002/ptr.6764
53. Ge Guangbo, Zhu Guanghao, Zhang Yani, Xiong Yuan, Hu Qing, Chen Hongzhuan Hypericum perforatum extract for inhibiting coronavirus 3CL proteolytic enzyme and medical application thereof. Patent China. CN113069486. 06.07.2021
54. Scholz W., Ludwig S., Hempel G., Hensel A. Compositions for treating SARS-CoV2 infection. Patent Germany. EP4094756A1∙2022-11-30.
Review
For citations:
Каzachinskaia Е.I., Коnonova Yu.V., Ivanova A.V., Zibareva L.N., Chepurnov А.А., Romanyuk V.V., Biibolatov A.A., Gulyaeva М.А., Shestopalov А.М. A method for obtaining aqueous and dry ethanol extracts of grass (a mixture of flowers with leaves) and a stalk of St. John's wort (Hypericum perforatum L.) with inhibitory activity on the replication of the SARS‐CoV‐2 coronavirus in vitro. South of Russia: ecology, development. 2023;18(3):103-117. (In Russ.) https://doi.org/10.18470/1992-1098-2023-3-103-117