Preview

South of Russia: ecology, development

Advanced search

Investigation of the inhibitory activity of extracts, fractions and secondary metabolites of Silene spp. (Caryophyllaceae) and Serratula cupuliformis (Asteraceae) on the replication of SARS-CoV-2 coronavirus

https://doi.org/10.18470/1992-1098-2023-1-62-81

Abstract

Aim. In vitro analysis of the inhibitory activity of extracts, fractions and secondary metabolites of plants of the genus Silene [Caryophylaceae] and Serratula cupuliformis [Asteraceae) on the replication of SARS-CoV-2.

Material and Methods. Silene spp. and Serratula cupuliformis of the Siberian Botanical Garden of National Research Tomsk State University were used. Ethanol extracts and butanol fractions of Silene spp. were prepared. The flavonoid shaftoside and the ecdysteroid 20-hydroxyecdysone from Lychnis chalcedonica were isolated. Analysis of BAS was carried out by the HPLC method. In vitro analysis of the inhibitory activity of extracts on SARS-CoV-2 replication was performed in Vero cell culture by direct inactivation [neutralization) of virions. Comparison samples were dry ethanol extracts of chaga [Inonotus obliquus, Basidiomycota), spices of cloves [Syzygium aromaticum, Myrtaceae) and root of licorice [Glycyrrhiza glabra L., Fabaceae).

Results. The inhibitory activity of ethanol extracts and butanol fractions of Silene spp., as well as individual compounds [shaftozide and 20-E) was revealed in the range of 50% effective concentrations [EC50) when dissolved in water from 339.85±83.92 pg/ml to 1.59±0.39 pg/ml and when dissolved in DMSO from 119.34±26.34 pg/ml to 2.22±0.57 pg/ml, respectively. The butanol fraction of Serratula cupuliformis was active with EC50=21.74±4.80 and 27.42±6.05 pg/mL. These results for some samples of Silene spp. and Serratula cupuliformis are comparable to the EC50 values of the comparators.

Conclusion. The results obtained suggest the presence of biologically active substances in the herbal preparations studied that act destructively on virions of SARS-CoV-2 and affect one of the main stages of its "life" cycle - on the attachment to receptors of sensitive cells.

About the Authors

E. I. Kazachinskaia
Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences; Vector State Research Centre of Virology and Biotechnology
Russian Federation

Elena I. Kazachinskaia - Doctor of Biology, Leading Researcher, Research Institute of Virology, FRC of Fundamental and Translational Medicine, Siberian Branch of RAS & Leading Researcher, Vector SRC of Virology and Biotechnology.

321 r/p Koltsovo Novosibirsk region, Novosibirsk, 630559. Tel. +79095307441


Competing Interests:

The article is published in the author's edition



L. N. Zibareva
National Research Tomsk State University
Russian Federation

Larisa N. Zibareva

Tomsk


Competing Interests:

The article is published in the author's edition



E. S. Filonenko
National Research Tomsk State University
Russian Federation

Elena S. Filonenko

Tomsk


Competing Interests:

The article is published in the author's edition



A. V. Ivanova
Vector State Research Centre of Virology and Biotechnology
Russian Federation

Alla V. Ivanova

Novosibirsk


Competing Interests:

The article is published in the author's edition



M. M. Gadzhieva
N.I. Prigorov Russian National Research Medicine University
Russian Federation

Malikat M. Gadzhieva

Moscow


Competing Interests:

The article is published in the author's edition



K. K. Bekshokov
I.M. Sechenov First Moscow State Medical University, Russian Ministry of Health
Russian Federation

Kazbek K. Bekshokov

Moscow


Competing Interests:

The article is published in the author's edition



Yu. V. Kononova
Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
Russian Federation

Yulia V. Kononova

Novosibirsk


Competing Interests:

The article is published in the author's edition



A. A. Chepurnov
Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences; Dagestan State University
Russian Federation

Alexander А. Chepurnov

Novosibirsk


Competing Interests:

The article is published in the author's edition



A. М. Shestopalov
Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences; Dagestan State University
Russian Federation

Alexander М. Shestopalov

Novosibirsk, Makhachkala


Competing Interests:

The article is published in the author's edition



References

1. Owen L., Laird K., Shivkumar M. Antiviral plant-derived natural products to combat RNA viruses: Targets throughout the viral life cycle. LettApplMicrobiol., 2022, vol. 75, no. 3, pp. 476-499. DOI: 10.1111/lam.13637

2. Pattnaik G.P., Chakraborty H. Entry Inhibitors: Efficient Means to Block Viral Infection. J Membr Biol., 2020, vol. 253, no. 5, pp. 425-444. DOI: 10.1007/s00232-020-00136-z

3. Bai L., Zhao Y., Dong J., Liang S., Guo M., Liu X., Wang X., Huang Z., Sun X., Zhang Z. et al. Coinfection with influenza A virus enhances SARS-CoV-2 infectivity. Cell Res., 2021, vol. 31, no. 4, pp. 395-403. DOI: 10.1038/s41422-021-00473-1

4. Abdoli A., Falahi S., Kenarkoohi A. COVID-19-associated opportunistic infections: a snapshot on the current reports. Clin Exp Med., 2021, vol. 22, no. 3, pp. 327-346. DOI: 10.1007/s10238-021-00751-7

5. SeeRle J., Hippchen T., Schnitzler P., Gsenger J., Giese T., Merle U. High rate of HSV-1 reactivation in invasively ventilated COVID-19 patients: Immunological findings. PLoS ONE, 2021, vol. 16, no. 7:e0254129. DOI: 10.1371/journal.pone.0254129

6. Mirzaei R., Goodarzi P., Asadi M., Soltani A., Aljanabi H.A.A., Jeda A.S., Dashtbin S., Jalalifar S., Mohammadzadeh R., Teimoori A. et al. Bacterial co-infections with SARS-CoV-2. IUBMB Life, 2020, vol. 72, no. 10, pp. 2097-2111. DOI: 10.1002/iub.2356

7. Zeng L., Watanabe N., Yang Z. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma. Crit. Rev. Food Sci., 2019, no. 59, pp. 2321-2334. DOI: 10.1080/10408398.2018.1506907

8. Zaynab M., Fatima M., Sharif Y., Zafar M.H., Ali H., Khan K.A. Role of primary metabolites in plant defense against pathogens. Microb Pathog., 2019, no. 137:103728. DOI: 10.1016/j.micpath.2019.103728

9. Aanouz I., Belhassan A., El-Khatabi K., Lakhlifi T., El-Ldrissi M., Bouachrine M. Moroccan Medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations. J BiomolStruct Dyn., 2021, vol. 39, no. 8, pp. 2971-2979. DOI: 10.1080/07391102.2020.1758790

10. Adhikari B., Marasini B.P., Rayamajhee B., Bhattarai B.R., Lamichhane G., Khadayat K., Adhikari A., Khanal S., Parajuli N. Potential roles of medicinal plants for the treatment of viral diseases focusing on COVID-19: A review. Phytother Res, 2021, vol. 35, no. 3, pp. 1298-1312. DOI: 10.1002/ptr.6893

11. Mohamed F.F., Anhlan D., Schofbanker M., Schreiber A., Nica Classen 3, Hensel A., Hempel G., Scholz W., Kuhn J., Hrincius E.R., Ludwig S. Hypericum perforatum and Its Ingredients Hypericin and Pseudohypericin Demonstrate an Antiviral Activity against SARS-CoV-2. Pharmaceuticals (Basel), 2022, vol. 15, no. 5:530. DOI: 10.3390/ph15050530

12. Satish C., Rawat D.S. Medicinal plants of the family Caryophyllaceae: a review of ethno-medicinal uses and pharmacological properties. Integr Med Res, 2015, vol. 4, no. 3, pp. 123-131. DOI: 10.1016/j.imr.2015.06.004

13. Mamadalieva N.Z., Lafont R., Wink M. Diversity of secondary metabolites in the genus Silene L. (Caryophyllaceae) - structures distribution, and biological properties. Diversity, 2014, no. 6, pp. 415-499.

14. Orhan I., Deliorman-Orhan D., Ozcelik B. Antiviral activity and cytotoxicity of the lipophilic extracts of various edible plants and their fatty acids. Food Chem., 2009, no. 115, pp. 701-705.

15. Zibareva L.N., Zueva E.P., Razina T.G., Amosova E.N., Krylova S.G., Lopatina K.A., Rybalkina O.Y., Badulina A.A., Safonova E.A., Babushkina M.S., Filonenko E.S., Galiulina A.V. The effect of Lychnis chalcedonica L. flavonoids on the development of tumors in mice and the effectiveness of treatment with cyclophosphamide. AIP Conf. Proc. 2015, vol. 1688, 030031. DOI: 10.1063/1.4936026

16. Amosova E.N., Zueva E.P., Lopatina K.A., Safonova E.A., Razina T.G., Rubalkina O.Yu., Zibareva L.N. Influence of Lychnis chalcedonica L. flavonoids on transplanted tumor development and cytostatic therapy effectiveness in mice. Pharmaceutical Chemistry Journal, 2019, vol. 53, no. 5, pp. 458-461. DOI: 10.1007/s11094-019-02019-7

17. Krylova S.G., Zueva E.P., Zibareva L.N., Amosova E.N., Razina T.G. Antiulcer activity of extracts of ecdysteroid-containing plants of genera Lychnis and Silene of the Caryophyllaceae family. Bull Exp Biol Med., 2014, vol. 158, no. 2, pp. 225-228. DOI: 10.1007/s10517-014-2728-1

18. Nesterova Yu.V., Povet'eva T.N., Zibareva L.N., Suslov N.I., Zueva E.P., Aksinenko S.G., Afanas'eva O.G., Krylova S.G., Amosova E.N., Rybalkina O.Yu., Lopatina K.A. Anti-Inflammatory and Analgesic Activities of the Complex of Flavonoids from Lychnis chalcedonica L. Bull Exp Biol Med., 2017, vol. 163, no. 2, pp. 222225. DOI: 10.1007/s10517-017-3771-5

19. Plotnikov M.B., Zibareva L.N., Vasil'ev A.S., Aliev O.I., Anishchenko A.M., Maslov M.Yu. Antihyperglycaemic, haemorheological and antioxidant activities of Lychnis chalcedonica L. extract in a streptozotocin-induced rat model of diabetes mellitus. J Complement Integr Med, 2019, vol. 17, no. 2, pp. 20170028. DOI: 10.1515/jcim-2017-0028

20. Shen N., Wang T., Gan Q., Liu S., Wang L., Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem., 2022, no. 383, article id: 132531. DOI: 10.1016/j.foodchem.2022.132531

21. Zakaryan H., Arabyan E., Oo A., Zandi K. Flavonoids: promising natural compounds against viral infections. Arch Virol, 2017, vol. 162, no. 9, pp. 2539-2551. DOI: 10.1007/s00705-017-3417-y

22. Jo S., Kim S., Shin D.H., Kim M.-S. Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem, 2020, vol. 35, no. 1, pp. 145-151. DOI: 10.1080/14756366.2019.1690480

23. Mhatre S' , Srivastava T., Naik S., Patravale V. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review. Phytomedicine, 2021, no. 85, article id: 153286. DOI: 10.1016/j.phymed.2020.153286

24. Tarbeeva D.V., Krylova N.V., Iunikhina O.V., Likhatskaya G.N., Kalinovskiy A.I., Grigorchuk V.P., Shchelkanov M.Y., Fedoreyev S.A. Biologically active polyphenolic compounds from Lespedeza bicolor. Fitoterapia, 2022, no. 157, article id: 105121. DOI: 10.1016/j.fitote.2021.105121

25. Zhang H., Li Z., Li C., Chen R., Liu T., Jiang Y. Antiviral Effect of Polyphenolic Substances in Geranium wilfordii Maxim against HSV-2 Infection Using in vitro and in silico Approaches Evid Based Complement. Alternat Med., 2022, no. 2022, article id: 7953728. DOI: 10.1155/2022/7953728

26. Saadh M.J., Jaber S.A., Alaraj M., Alafnan A. Apigenin inhibits infectious bronchitis virus replication in ovo. Eur Rev Med PharmacolSci, 2022, vol. 26, no. 15, pp. 5367-5371. DOI: 10.26355/eurrev_202208_29403

27. Wang S.-C., Chou I.-W., Hung M.-C. Natural tannins as anti-SARS-CoV-2 compounds. Int J Biol Sci., 2022, vol. 18, no. 12, article id: 4669-4676. DOI: 10.7150/ijbs.74676

28. Liu H., Ye F., Sun Q., Liang H., Li C., Li S., Lu R., Huang B., Tan W., Lai L. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro CoV-2. J Enzyme Inhib Med Chem., 2021, vol. 36, no. 1, pp. 497-503. DOI: 10.1080/14756366.2021.1873977

29. Song J., Zhang L., Xu Y., Yang D., Zhang L., Yang S., Zhang W., Wang J., Tian S., Yang S., Yuan T., Liu A., Lv Q., Li F. , Liu H., Hou B., Peng X., Lu Y., Du G. The comprehensive study on the therapeutic effects of baicalein for the treatment of COVID-19 in vivo and in vitro. Biochem Pharmacol., 2021, no. 183, article id:114302. DOI: 10.1016/j.bcp.2020.114302

30. Yi Y., Zhang M., Xue H., Yu R., Bao Y.-O., Kuang Y., Chai Y., Ma W., Wang J., Shi X. et al. Schaftoside inhibits 3CLpro and PLpro of SARS-CoV-2 virus and regulates immune response and inflammation of host cells for the treatment of COVID-19. Acta Pharm Sin B, 2022, vol. 12, no. 11, pp. 4154-4164. DOI: 10.1016/j.apsb.2022.07.017

31. Arif Y., Singh P., Bajguz A., Hayat S. Phytoecdysteroids: Distribution, Structural Diversity, Biosynthesis, Activity, and Crosstalk with Phytohormones. Int J Mol Sci., 2022, vol. 23, no. 15, pp. 8664. DOI: 10.3390/ijms23158664

32. Dinan L., Dioh W., Veillet S., Lafont R. 20-Hydroxyecdysone, from Plant Extracts to Clinical Use: Therapeutic Potential for the Treatment of Neuromuscular, Cardio-Metabolic and Respiratory Diseases. Biomedicines, 2021, vol. 9, no. 5, pp. 492. DOI: 10.3390/biomedicines9050492

33. Dioh W., Chabane M., Tourette C., Azbekyan A., Morelot-Panzini C., Hajjar L.A., Lins M., Nair G.B., Whitehouse T., Mariani J., Latil M., Camelo S., Lafont R., Dilda P.J., Veillet S., Agus S. Testing the efficacy and safety of BIO101, for the prevention of respiratory deterioration, in patients with COVID-19 pneumonia (COVA study): a structured summary of a study protocol for a randomised controlled trial. Trials, 2021, vol. 22, no. 1, pp. 42. DOI: 10.1186/s13063-020-04998-5

34. Hussain A. A phylogenetic perspective of antiviral species of the genus Artemisia (Asteraceae - Anthemideae): A proposal of anti SARS-CoV-2 (COVID-19) candidate taxa. J Herb Med., 2022, no. 36, article id: 100601. DOI: 10.1016/j.hermed.2022.100601

35. Kazachinskaia E.I., Romanova V.D., Ivanova A.V., Chepurnov А.А., Kononova Y.V., Shaulo D.N., Romanyuk V.V., Shestopalov А.М. Inhibitory activity of dry ethanol extracts of Artemisia spp. on SARS-CoV-2 replication in vitro. South of Russia: ecology, development, 2022, vol. 17, no. 4, pp. 111-129. (In Russian) DOI: 10.18470/1992-1098-2-22-4-111-129

36. Zibareva L.N., Yeriomina V.I. Sposob uvelicheniya stepeni izvlecheniya ekdisteroidov iz rastitel'nykh ob "ektov [A method for increasing the degree of extraction of ecdysteroids from plant objects]. Patent of the Russian Federation no. 2472519C1 published in Bulletin of Inventions no. 2. 20.01.2013. (In Russian)

37. Zibareva L., Athipornchai A., Wonganan O., Suksamrarn A. Application of ultrasound to extraction of biologically active substances of some Serratula species. International Journal of Food and Biosystems Engineering. 2017, vol. 5, no. 1, pp. 31-37. Available at: http://fabe.gr/en/journal/journal (accessed 12.12.2022)

38. Zibareva L., Yeriomina V.I., Munkhjargal N., Girault J.-P., Dinan L., Lafont R. The Phytoecdysteroid Profiles of 7 Species of Silene (Caryophyllaceae). Archives of insect biochemistry and physiology, 2009, vol. 72, no. 4, pp. 234-248. DOI: 10.1002/arch.20331

39. Zibareva L.N., Filonenko E.S., Chernyak E.I., Morozov S.V., Kotelnikov O.A. Flavonoids of some plant species of the genus Silene. Chemistry of plant raw materials, 2022, no. 3, pp. 109-118. (In Russian) DOI: 10.14258/jcprm.20220310592

40. Teplyakova T.V., Pyankov O.V., Skarnovich M.O., Bormotov N.I., Poteshkina A.L., Ovchinnikova A.S., Kosogova T.A., Magerramova A.V., Markovich N.A., Filippova E.I. Ingibitor replikatsii koronavirusa SARS-CoV-2 na osnove vodnogo ekstrakta griba Inonotus obliquus [An inhibitor of SARS-CoV-2 coronavirus replication based on an aqueous extract of the fungus Inonotus obliquus]. Patent of the Russian Federation no. 2741714C1 published in Bulletin of Inventions no. 4. 28.01.2021. (In Russian)

41. Kazachinskaia E.I., Chepurnov А.А., Kononova Yu.V., Shelemba А.А., Romanyuk V.V., Magomedov M.G., Shestopalov А.М. Inhibitory activity of tea compositions and their constituent ingredients on SARS-COV-2 replication in vitro. South of Russia: ecology, development, 2022, vol. 17, no. 2, pp. 76-90. DOI: 10.18470/1992-1098-2022-2-76-90 (In Russian)

42. Tolah A.M., Altayeb L.M., Alandijany T.A., Dwivedi V.D., El-Kafrawy S.A., Azhar E.L Computational and In Vitro Experimental Investigations Reveal Anti-Viral Activity of Licorice and Glycyrrhizin against Severe Acute Respiratory Syndrome Coronavirus 2. Pharmaceuticals (Basel), 2021, vol. 14, no. 12, article id: 1216. DOI: 10.3390/ph14121216

43. Chepurnov A.A., Sharshov K.A., Kazachinskaya E.I., Kononova Yu.V., Kazachkova E.A., Khripko O.P., Yurchenko K.S., Alekseev A.Yu., Voevoda M.I., Shestopalov A.M. Antigenic properties of sARs-CoV-2/human/RUs/nsk-FRCFtM-1/2020 coronavirus isolate from a patient in novosibirsk. Journal Infectology, 2020, vol. 12, no. 3, pp. 42-50. (In Russian) DOI: 10.22625/2072-6732-2020-12-3-42-50

44. Kazachinskaia E.I., Chepurnov A.A., Shcherbakov D.N, Kononova Yu.V., Shanshin D.V., Romanova V.D., Khripko O.P., Saroyan T.A., Gulyaeva M.A., Voevoda M.I., Shestopalov A.M. IgG Study of Blood Sera of Patients with COVID-19. Patogens, 2021, vol. 10, no. 11, pp. 1421. DOI: 10.3390/patogens10111421

45. Case J.B., Bailey A.L., Kim A.S., Chen R.E., Diamond M.S. Growth, detection, quantification, and inactivation of SARS-CoV-2. Virology, 2020, no. 548, pp. 39-48. DOI: 10.1016/j.virol.2020.05.015

46. Hassan S.T.S., Berchova-Bimova K., Sudomova M., Malanik M., Smejkal K., Rengasamy K.R.R. In Vitro Study of Multi-Therapeutic Properties of Thymus bovei Benth. Essential Oil and Its Main Component for Promoting Their Use in Clinical Practice. J. Clin. Med., 2018, vol. 7, article id: 283. DOI: 10.3390/jcm7090283

47. Fisenko V.P. Guidelines for experimental (preclinical) study of new pharmacological substances. In accordance with the order. Ministry of Health of the Russian Federation, Closed Joint Stock Company «Remedium», Moscow, 2000, 398 p. (In Russian)

48. Zibareva L.N., Yeriomina V.I., Ivanova N.A. New ecdysteroid species of the genus Silene L. and the dynamics of the content of ecdysterone in them. Rast. Resources, 1997, vol. 33, no. 3, pp. 7376. (In Russian)

49. Mamadalieva N., Zibareva L., Evrard-Todeschi N. Girault J.-P., Maria A., Ramazonov N.Sh., Saatov Z., Lafont R. New minor ecdysteroids from Silene viridiflora. Collect. Czech. Chem. Commun., 2004, vol. 69, pp. 1675-1680.

50. Zibareva L.N., Seliverstova A.A., Suksamrarn A., Morozov S.V., Chernjak E.I. Phytoecdysteroids from the Aerial Part of Silene colpophylla. Chemistry of Natural Compounds, 2014, vol. 50, no. 3, pp. 571-572. DOI: 10.1007/s10600-014-1021-x

51. Filonenko E.S., Zubareva L.N. Ecdysteroids and flavonoids Silene graefferi. Chemistry of plant raw materials, 2021, no. 1, pp. 175-182. (In Russian) DOI: 10.14258/jcprm.2021018294

52. Zibareva L. Distribution and levels of phytoecdysteroids in plants of genus Silene during development. Archives of insect biochemistry and physiology, 2000, vol. 43, pp. 1-8.

53. Zibareva L.N., Amosova E.N., Krylova S.G., Zueva E.P., Rybalkina O.Y., Plotnikov M.B., Aliyev O.I., Vasiliev A.S., Anishchenko A.M., Suslov N.I., Nesterova Yu.V., Povetyeva T.N., Afanasyeva O.G., Erst A.A., Razina T.G., Safonova E.A., Kiseleva E.A. Rasteniya rodov Silene L. i Lychnis L. (Caryophyllaceae): sostav khimicheskikh komponentov i biologicheskaya aktivnost' [Plants of the genera Silene L. and Lychnis L. (Caryophyllaceae): composition of chemical components and biological activity]. Tomsk, Tomsk State University Publ., 2021, 496 p. (In Russian)

54. Mamadalieva N., Zibareva L., Saatov Z. Phytoecdysteroids of Silene linicola. Chemistry of Natural Compounds, 2002, vol. 38, pp. 268-271.

55. Zibareva L.N., Baltaev U.A., Revina T.A., Abubakirov N.K. Phytoecdysteroids of plants of the genus Lychnis. Chemistry of natural compounds. 1991, no. 4, pp. 584-585. (In Russian)

56. Zibareva L.N., Saatov Z., Abubakirov N.K. Stachisterone D, viticosterone E and a-ecdysone from Lychnis chalcedonica. Chemistry of natural compounds. 1991, no. 4, pp. 585-586. (In Russian)

57. Wang H., Zhang Y., Huang B., Huang B., Deng W., Quan Y., Wang W., Xu W., Zhao Y., Li N., Zhang J. et al. Development of an Inactivated Vaccine Candidate, BBIBP-CorV, with Potent Protection against SARS-CoV-2. Cell, 2020, vol. 182, no. 3, pp. 713-721.e9. DOI: 10.1016/j.cell.2020.06.008

58. Popovici V., Bucur L., Gird C.E., Rambu D., Calcan S.I., Cucolea E.I., Costache T., Ungureanu-Iuga M., Oroian M., Mironeasa S., Schroder V., Ozon E.-A., Lupuliasa D., Caraiane A., Badea V. Antioxidant, Cytotoxic, and Rheological Properties of Canola Oil Extract of Usnea barbata (L.) Weber ex F.H. Wigg from Calimani Mountains, Romania. Plants (Basel), 2022, vol. 11, no. 7, article id: 854. DOI: 10.3390/plants11070854

59. Trujillo-Correa A.I., Quintero-Gil D.C., Diaz-Castillo F., Quinones W., Robledo S. M., Martinez-Gutierrez M. In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC Complement Altern Med, 2019, vol. 19, no. 1, pp. 298. DOI: 10.1186/s12906-019-2695-1

60. Galvao J., Davis B., Tilley M., Normando E., Duchen M.R., Cordeiro M.F. Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J., 2014, vol. 28, no. 3, pp. 1317-1330. DOI: 10.1096/fj.13-235440

61. Gironi B., Oliva R., Petraccone L., Paolantoni M., Morresi A. , Vecchio P.D., Sassi P. Solvation properties of raft-like model membranes. Biochim Biophys Acta Biomembr, 2019, vol. 1861, no. 11, article id: 183052. DOI: 10.1016/j.bbamem.2019.183052

62. Kanjanasirirat P., Suksatu A., Manopwisedjaroen S., Munyoo B. , Tuchinda P-, Jearawuttanakul K., Seemakhan S., Charoensutthivarakul S., Wongtrakoongate P., Rangkasenee N. et al. High-content screening of Thai medicinal plants reveals Boesenbergia rotunda extract and its component Panduratin A as anti-SARS-CoV-2 agents. Sci Rep., 2020, vol. 10, no. 1, article id: 19963. DOI: 10.1038/s41598-020-77003-3

63. Xie P., Fang Y., Shen Z., Shao Y., Ma Q., Yang Z., Zhao J., Li H., Li R., Dong S., Wen W., Xia X. Broad antiviral and anti-inflammatory activity of Qingwenjiere mixture against SARS-CoV-2 and other human coronavirus infections. Phytomedicine, 2021, no. 93, article id: 153808. DOI: 10.1016/j.phymed.2021.153808

64. Zannella C., Giugliano R., Chianese A., Buonocore C., Vitale G.A., Sanna G., Sarno F., Manzin A., Nebbioso A., Termolino P., Altucci L., Massimiliano G., de Pascale D., Franci G. Antiviral Activity of Vitis vinifera Leaf Extract against SARS-CoV-2 and HSV-1. Viruses, 2021, vol. 13, no. 7, pp. 1263. DOI: 10.3390/v13071263

65. Nie C., Trimpert J., Moon S., Haag R., Gilmore K., Kaufer B.B., Seeberger P.H. In vitro efficacy of Artemisia extracts against SARS-CoV-2. Virol J., 2021, vol. 18, no. 1, pp. 182. DOI: 10.1186/s12985-021-01651-8

66. Chuang S.-T., Buchwald P. Broad-Spectrum Small-Molecule Inhibitors of the SARS-CoV-2 Spike-ACE2 Protein-Protein Interaction from a Chemical Space of Privileged Protein Binders. Pharmaceuticals (Basel), 2022, vol. 15, no. 9, pp. 1084. DOI: 10.3390/ph15091084

67. Artese A., Svicher V., Costa G., Salpini R., Maio V.C.D., Alkhatib M., Ambrosio F.A., Santoro M.M., Assaraf Y.G., Alcaro S., Ceccherini-Silberstein F. Current status of antivirals and druggable targets of SARS CoV-2 and other human pathogenic coronaviruses. Drug Resist Updat., 2020, no. 53, article id: 100721. DOI: 10.1016/j.drup.2020.100721

68. Liu X.-H., Cheng T., Liu B.-Y., Chi J., Shu T., Wang T. Structures of the SARS-CoV-2 spike glycoprotein and applications for novel drug development. Front Pharmacol., 2022, no. 13, article id: 955648. DOI: 10.3389/fphar.2022.955648

69. Cao J., Liu Y., Zhou M., Dong S., Hou Y., Jia X., Lan X., Zhang Y., Guo J., Xiao G., Wang W. Screening of Botanical Drugs against SARS-CoV-2 Entry Reveals Novel Therapeutic Agents to Treat COVID-19. Viruses, 2022, vol. 14, no. 2, pp. 353. DOI: 10.3390/v14020353

70. Kicker E., Tittel G., Schaller T., Pferschy-Wenzig E.-M., Zatloukal K., Bauer R. SARS-CoV-2 neutralizing activity of polyphenols in a special green tea extract preparation. Phytomedicine, 2022, no. 98, article id: 153970. DOI: 10.1016/j.phymed.2022.153970

71. Sahoo M.R., Umashankar M.S., Varier R.R. The research updated and prospects of herbal hard-boiled lozenges: a classical platform with promising drug delivery potential. Int J App Pharm., 2021, vol. 13, no. 2, pp. 1-13. Available at: https://innovareacademics.in/journals/index.php/ijap/article/view/40165 (accessed 30.11.2022)


Review

For citations:


Kazachinskaia E.I., Zibareva L.N., Filonenko E.S., Ivanova A.V., Gadzhieva M.M., Bekshokov K.K., Kononova Yu.V., Chepurnov A.A., Shestopalov A.М. Investigation of the inhibitory activity of extracts, fractions and secondary metabolites of Silene spp. (Caryophyllaceae) and Serratula cupuliformis (Asteraceae) on the replication of SARS-CoV-2 coronavirus. South of Russia: ecology, development. 2023;18(1):62-81. (In Russ.) https://doi.org/10.18470/1992-1098-2023-1-62-81

Views: 527


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1992-1098 (Print)
ISSN 2413-0958 (Online)