An early warning system for highly pathogenic viruses borne by waterbird species and related dynamics of climate change in the Caspian Sea region: Outlines of a concept
https://doi.org/10.18470/1992-1098-2022-2-233-263
Abstract
Aim. Formulation of the outlines of the concept of ViEW (Viral Early Warning) which is intended as a long term system of multidisciplinary transboundary cooperation between specialist institutions of all five Caspian region states to research, regularly monitor and share data about the generation, transmission and epidemiology of avian‐borne pathogens and their vectors in the region, and the ways climate change may affect these processes.
Material and Methods. The concept is based on the multidisciplinary experience of the authors in researching the processes incorporated in the ViEW concept and on an in‐depth survey of the literature involved.
Results. The outlines of the ViEW concept are presented in this study for review and comment by interested parties and stakeholders.
Conclusion. Review of activities and opinions of specialists and organizations with remits relating to the development, establishment and maintenance of ViEW, indicates that such a system is a necessity for global animal and human health because of the role that the Caspian region plays in the mass migration of species of waterbird known as vectors for avian influenza and the already evident impacts of climate change on their phenologies. Waterbirds frequenting the Caspian Sea littorals and their habitats together constitute a major potential global hotspot or High Risk region for the generation and transmission of highly pathogenic avian influenza viruses and other dangerous zoonotic diseases.
Keywords
About the Authors
G. PetherbridgeRussian Federation
Guy Petherbridge, Professor, Caspian Centre for Nature Conservation, Institute of Ecology and Sustainable Development
21 Dakhadaeva St, Makhachkala 367000
Теl. +79886340050
Competing Interests:
The author declares no conflict of interest.
A. A. Gadzhiev
Russian Federation
Alimurad A. Gadzhiev
Makhachkala
Competing Interests:
The author declares no conflict of interest.
А. М. Shestopalov
Russian Federation
Аlexander М. Shestopalov
Novosibirsk
Competing Interests:
The author declares no conflict of interest.
A. Yu. Alekseev
Russian Federation
Alexander Yu. Alekseev
Novosibirsk
Competing Interests:
The author declares no conflict of interest.
K. A. Sharshov
Russian Federation
Kirill A. Sharshov
Novosibirsk
Competing Interests:
The author declares no conflict of interest.
M. G. Daudova
Russian Federation
Madina G. Daudova
Makhachkala
Competing Interests:
The author declares no conflict of interest.
References
1. Abdelwhab E.M. et al., 2014, Prevalence and control of H7 avian influenza viruses in birds and humans, Epidemiology and Infection, 142, pp. 896-920.
2. Abdollahi H. et al., 2020, Spatial spread and emergence of reassortment H5 highly pathogenic avian influenza in Iran, Infection, Genetics and Evolution, 83, September 2020. https: 10/1016/j.meegid.2020.04342
3. Abramova Z., 1995, L’art paléolithique d’Europe orientale et de Sibérie, Jérôme Millon, Grenoble.
4. Abtin A. et al., 2022, Characterisation, whole-genome sequencing and phylogenetic analysis of three H3N2 avian influenza viruses isolated from domestic ducks in a live poultry market in Iran, First Report, Veterinary Medicine and Science, 8, pp. 1594-1602. https:// doi.org/10.1002/vms3.819
5. Abu Seri N. & Abd Rahman A., 2021, Impact of climate change on migratory birds in Asia, Petanika Journal of Science and Technology, 29 (4), pp. 2937-2965. https://doi.org/10.47836/pjst.29.4.38
6. Adlhoch C. et al., 2010, Avian influenza overview May-August 2020, Scientific Report, European Food Safety Authority, European Centre for Disease Prevention and Control & European Reference Laboratory for Avian Influenza, EFSA Journal, 18 (9), 6270. https://doi.org/10.2903/j.efra.2020.7270
7. Agayeva E.M. & Zeynalova S.K., 2011, Reserve of avian influenza and Newcastle Disease in Azerbaijan, Epizoology, 2, Baku (Azerbaijan Agricultural Science), pp. 116-118.
8. Ahrens K.A. et al., 2022, Exploring surface water as a transmission medium of avian influenza viruses: Systematic infection studies in mallards, Emerging Microbes and Infections, 11 (1), pp. 1250-1261. https://doi.org/10.1080/2222/751.2022.2065937
9. Alemi Safaval P. et al., 2018, Morphological changes in the southern coasts of the Caspian Sea using remote sensing and GIS, Caspian Journal of Environmental Sciences, 16 (3), pp. 271-285.
10. Alexander D.J., 2000, A review of avian influenza in different bird species, Veterinary Microbiology, 74, pp. 3–13. https://doi.org/10.1016/S0378-1135(00)00160-7
11. Алексеев А. Ю. и др, 2019, Анализ миграций птиц водного и околоводного комплекса на территории Республики Дагестан и обоснование выбора ключевых точек мониторинга гриппа типа А, South of Russia, Ecology, Development, 14 (1), C. 137-149. https://doi.org/10.18470/1992-1098-2019-1-137-149
12. Alexander D.J., 2007, An overview of the epidemiology of avian influenza, Vaccine, 25, pp. 5637–5644. https://doi.org/10.1016/j.vaccine.2006.10.051
13. Allen T. et al., 2017, Global hotspots and correlates of emerging zoonotic diseases, Nature Communications, 8 (1), Article no. 1124.
14. Ali Ghafouria S. et al., 2019, Comparative Immunology, Microbiology and Infectious Diseases, 64, June 2019, pp. 73-80. https://doi.org/10.1016/j.cimid.2019.03.005
15. Aliponi H. et al., 2016, Concentrations of heavy metals in tissue of the Mallard Anas platyrynchos in Kanibarazan, northwestern Iran, Podoces, 11, pp. 35-42.
16. Amanov B., 2021, State Veterinary Service under the Ministry of Agriculture and Environmental Protection of Turkmenistan, Ashgabat.
17. Amirgazin A. et al., 2020, Highly pathogenic avian influenza virus of the A/H5N8 subtype, clade 2.3.4.4b, caused outbreaks in Kazakhstan in 2020, PeerJ, 10, e13038. https://doi.org/10.7717/peerj.13038
18. Андреев В.П. и др., 1980, Изоляция вирусов гриппа от чайковых птиц на островах Северного Каспия и Черного моря и вируса болезни Ньюкасла от уток в дельте р. Волги в 1978 г., Экология вирусов, Москва, 1980, С. 81-85.
19. Андриясов А. В. и др., 2006, Идентификация и генетический анализ изолятов вируса гриппа птиц, выделенных на территории Южного федерального округа в 2006 году, Ветеринарна медицина, 87, С. 24−31.
20. Ansali Wetland Ecological Management Project in the Islamic Republic of Iran: Project Completion Report, August 2012, DOE Project Team and JICA Expert Team (Nippon Koei Co. Ltd), Department of the Environment and Japan International Cooperation Agency JICA)
21. Arakharov I. Kh. (ed.), 2013, Red Book of the Republic of Azerbaijan, Ministry of Ecology and Natural Resources of the Azerbaijan Republic, Institute of Zoology, National Academy of Sciences. 2 nd Ed.
22. Arajau M.B. & Luoto M., 2007, The importance of biotic interactions for modelling species distributions under climate change, Global Ecology and Biogeography, 16, pp. 743-753.
23. Аристова В.А. и др., 1986, Эколого-вирусологическое изучение гнездовых популяций чайковых птиц на о. Жемчужном Северного Каспия, Изучение птиц СССР, их охрана и рациональное использование: IХ Всес. орнитол. конф. и 1 съезд орнитол. Общества, Тез. Докл., Ленинград, Ч.2, 1986, Ч.2, С. 204-205.
24. Аристова В.А. и др., 1982, Изоляция вирусов гриппа от птенцов чайковых птиц на о. Жемчужный Северного Каспия, Экология вирусов, Москва, 1982, С. 91-94.
25. Ashrafi K. et al., 2021, Migratory routes, domesticated birds and cercasial dermatitis: The distribution of Trichobilharzia franki in Northern Iran, Parasite, 28, pp. 1-17.
26. Asia-Pacific Working Group on Migratory Waterbirds and Avian Influenza Working Group meeting, Beijing, 17 November 2007, Terms of Reference.
27. Atamuradov H.I. et al., 1999, Biodiversity, genetic diversity and protected areas in Turkmenistan, Journal of Sustainable Forestry, 9 (1-2), pp. 73-88. https://doi.org/10.1300/j09v09n1_06atamuradov
28. Athari A. et al., 2006, Determination of definitive and intermediate hosts of cercasial dermatitis producing agents in northern Iran, Archives of Iranian Medicine, 9, pp. 11-15.
29. Atoni E. et al., 2019, The discovery and global distribution of novel mosquito-associated viruses in the last decade (2007-2017), Reviews in Medical Virology, 29, e2079. https://doi.org/10.1002/rmv.2079.
30. Avian Influenza in Wild Birds in Australia, Fact Sheet, September 2022, Wildlife Health Australia.
31. Barisov S.N. et al., 2020, Seasonal migrations of Pantala flavescans (Odonata: Libellulidae) in Middle Asia and understanding of the migration model in the Afro-Asian region, using stable isotopes of hydrogen, Insects, 11, Article No. 890.
32. Bashashati M. et al., 2020, Ongoing genetic evolution of H9N2 avian influenza viruses in Iranian industrial poultry farms, Acta Veterinaria Hungarica, 68 (3), pp. 328-335. https://doi.org/10.1556/004.2020.00048
33. Bauer H.-G. et al. (eds), 2005, Das Kompendium der Vögel Mitteleuropas. Alles über Biologie, Gefährdung und Schutz. (Compendium of Central European birds. All about biology, endangers and protection. Vol. 1 Nonpasseriformes, Vol. 2 Passeriformes, Vol. 3 Literature and Appendix), AULAVerlag, Wiebelsheim. 2 nd Ed.
34. Becker W.B., 1966, The isolation and classification of tern virus: influenza virus A/Tern/South Africa/1961, the Journal of Hygiene (Lond.), 64, pp.309–320. https://doi.org/10.1017/S0022172400040596
35. Behroudzuad B., 2007, Identification of fish-eating birds of northern wetlands of Iran, International Journal of Environmental Research, 1 (2). https://doi.org/10-22059/IJER.2010.114
36. Behrooz R.D. & Burger J., 2022, Heavy metals in liver, kidney, brain and muscle: Health risk assessment for consumption of edible parts of birds from the Chahnimeh reservoir, Sistan (Iran), Biological Trace Element Research, September 2009, pp. 4098-4113. https://doi.org/10.1007/s12011-021-02995-6
37. Birdlife International, 2008, State of the World’s Birds and Indicators of Our Changing World, Birdlife International, Cambridge.
38. Birdlife International, Projecting the Impacts of Climate Change, factsheet/22710441/climate. http://www.datazone.birdlife.org/species/climatechangemaps
39. Birdlife International, 2010, Threats, stresses and impacts, Birdlife International. http://www.birdlife.org/datazone/country/Iran
40. Bird Observatories Flock Together: IBOC International Bird Observatories Conference, Eilat, Israel, 2019, Book of Abstracts.
41. Bird Species and Climate Change: The Global Status Report, A synthesis of Current Scientific Understanding of Anthropogenic Climate Change Impacts on Global Bird Species Now, and Projected Future Effects, 2010, Climate Risk Pty Ltd.
42. Boere G.G., 2007, Waterbirds around the World: A Global Overview of the Conservation, Management and Research of the World’s Waterbird Flyways, Scottish Natural Heritage: Edinburgh.
43. Boere G.C. & Stroud D.A., 2006, The flyway concept: what it is and what it isn’t. In: G. C. Boere G.C. et al. (eds), Waterbirds around the world, The Stationery Office, Edinburgh, pp. 40-47.
44. Gadzevich D.V., 2019, Epidemiological monitoring of avian influenza in the Republic of Crimea, Veterinary Science Today, 1(28). https://doi.org/10.29326/2304-196X-2019-1-28-34-38
45. Волков М. С. и др., 2020, Результаты научной экспедиции в природные биотопы Республики Тыва в 2019 году для проведения мониторинга инфекционных болезней в популяциях диких птиц, Ветеринария сегодня, 2 (33), С. 83–88. https://doi.org/10.29326/2304-196X-2020-2-33-83-88.
46. Воротилова Н. Г. и др., 2015. Эпизоотологический мониторинг инфекционных болезней птиц в Республике Крым, Известия сельскохозяйственной науки Тавриды, 3 (166), С. 81–92.
47. Воротилова Н. Г. и др., 2015, Мониторинг инфекционных болезней птиц в Республике Крым, Известия сельскохозяйственной науки Тавриды, 3 (166), C. 81-92.
48. Boyce W.M. et al., 2009, Avian influenza viruses in wild birds: a moving target, Comparative Immunology, Microbiology & Infectious Diseases, 32(4), pp. 275-86. http://doi.org/10.1016/j.cimid.2008.01.002.
49. Брагина Т., Брагин Е. (ред.), 2002, Важнейшие водно- болотные угодья Северного Казахстана (в пределах Костанайской и Северо-Казахстанской областей), Русский университет, Москва/Bragina T. & Bragin E (eds), 2002, The most important wetlands of North Kazakhstan (Kastanai and North Kazakhstan Oblasts, Russian University, Moscow.
50. Bridge E.S. et al., 2014, Bird migration and avian influenza. A comparison of hydrogen stable isotopes and satellite tracking images, Ecological Indicators, 45, pp. 266-273.
51. Brochet A.L. et al., 2019, A preliminary assessment of the scope and scale of illegal killing and taming of wild birds in the Arabian peninsula, Iran and Iraq, Sandgrouse, 41, pp. 154-175.
52. Braun D.H. et al., 2021, Identifying the research gap of zoonotic disease in displacement: A systematic review, Global Health Research and Policy, 6 (1), Article No. 25.
53. Bui V.N. et al., 2001, Genetic characterization of a rare H12N3 avian influenza virus isolated from a green-winged teal in Japan, Virus Genes, 50, pp. 316–320.
54. Букреев С.А., Зубакин В.А., 1999, Инветаризация, Мониторинг и охрана ключеых орнитологических территорий России, Союз Охраны Птиц России/Russian Bird Conservation Union, Москва.
55. Bukhreev S.A., 1997, Ornithography and Conservation of Turkmenistan, TSODPSES, Moscow. (in Russian)
56. Campitelli L. et al., 2004, Interspecies transmission of an H7N3 influenza virus from wild birds to intensively reared domestic poultry in Italy, Virology, 323, pp. 24–36.
57. Chen R. & Holmes E.C., 2006, Avian influenza virus exhibits rapid evolutionary dynamics, Molecular Biology and Evolution, 23, pp. 2336–2341. https://doi.org/10.1093/molbev/msl102
58. Chen R. & Holmes E.C., 2009, Frequent inter-species transmission and geographic subdivision in avian influenza viruses from wild birds, Virology 2009, 383, pp. 156–161.
59. Choi K.S. et al., 2013, Genetic diversity of avian paramyxoviruses from wild ducks in Korea from 2006 to 2011, Virus Genes, 46, pp. 302-308.
60. Clairbaux M. et al., 2019, Climate change could overturn bird migration: Transarctic and high latitude residence in a sea ice free Arctic, Nature Scientific Reports, 9, 17767. https://www.doi.org/10.1028/s41598-019-54228-5
61. Coffee L.L. et al., 2010, Avian paramyxoviruses in shorebird and Gulls, Journal of Wildlife Diseases, 46 (2), pp. 481-487.
62. Crick H.G.P., 2004, The impact of climate change on birds, Ibis, 146 (Suppl. 1), pp. 48-56.
63. Cumming G.S. et al., 2008, Wild bird movements and avian influenza risk mapping in Southern Africa, Ecology and Society, 13 (2): 26. http://www.ecologyandsociety.org/vol13/iss2/art26/
64. Danilenko E.A. et al., 2018, Characterization of avian-like influenza A (H4N6) virus isolated from Caspian Seal in 2012, Virologica Sinica, 33, 449–452.
65. Dash S.P. et al., 2021, Climate change: How it impacts the emergence, transmission, resistance and consequences of viral infections in animals, Critical Reviews in Microbiology, 47 (3), pp. 307-322.
66. Davidson N.C. & Stroud D.A., 2006, African-West Eurasian flyways: Current knowledge, population status and future challenges. In: Boere G.C. et al. (eds), Waterbirds around the World, The Stationery Office, Edinburgh, pp. 63-75.
67. Delany S. et al. (eds), 2006, Urgent preliminary assessment of ornithological data relevant to the spread of avian influenza in Europe, Report to the European Commission. http://ec.europa.eu/environment/nature/nature_conservation/focus_wildbirds/avian/_influenza?index_en.htm
68. De Marco M.A. et al., 2016, Ecology of avian influenza viruses in Siberia. In: Siberia: Ecology, Diversity and Environmental Impact, Nova Science Pub Inc., Hauppauge, NY, pp. 83-160.
69. Derevianko A.P. et al. (eds), 1998, The Paeolithic of Siberia: New Discoveries and Interpretations, trans. Laricheva I.P., University of Illinois, Champaign.
70. Dhingra M.S. et al., 2018, Geographical and historical patterns in the emergences of novel highly pathogenic avian influenza (HPAI) H5 and H7 viruses in poultry, Frontiers in Veterinary Science, 5, 84.
71. Diadicheva E. & Khomenko S., 2006, Migration of Curlew Sandpiper Calidris ferrugina through the Azov-Black Sea region, Ukraine, International Wader Studies, 19, pp. 82-95.
72. Djamirzoyev G. et al, 2004, Birds of Dagestansky Nature Reserve, Makhachkala.
73. Dugan V.G. et al, 2008, The evolutionary genetics and emergence of avian influenza viruses in wild birds, PLOS Pathogens, 4, e1000076. https://doi.org/10.1371/journal.ppat.1000076
74. Easterday B.C. et al, 1968, Evidence of infection with influenza viruses in migratory waterfowl, Nature, 219, pp. 523–524. https://doi.org/10.1038/219523a0
75. Endo A. & Nishiura H., 2018, The role of migration in maintaining the transmission of avian influenza in waterfowl: A multisite multispecies transmission model along East Asia- Australian flyway, Canadian Journal of Infectious Diseases and Medical Microbiology, 2018. http://doi.org/10.1155/2018/3420533
76. Эсенов П., Сапаров У.Б., 2006, Анализ состояния водных экосистем Туркменистана, Проблемы сохранения экосистем внутренних вод Центральной Азии и Южного Кавказа. Алматы- Ташкен, С. 48-54, 122-128.
77. European Union, 2006, Information Note on “Avian Influenza and Migratory Birds”, Nature and Biodiversity Unit of DG Environment in Consultation with the ORNIS Scientific Working Group, Version 20/07/2006.
78. Evans M.I (ed.), 1994, Important Bird Areas in the Middle East, Birdlife International, Cambridge.
79. Fallah Mehrabadi M.H. et al., 2014, Sero-survey of avian influenza in backyard poultry and wild bird species in Iran, Preventative Veterinary Medicine, 128, pp. 1-5.
80. FAO (Food and Agriculture Administration of the United Nations), H7N9 Situation Update, 2019. Available online: http://www.fao.org/ag/againfo/programmes/en/empres/h7n9/situation_update.html) (accessed on 16 April 2021)
81. Farkhar M. et al., 2016, Phylogenetic analysis of nasal avian schistosomes (Trichobilharzia) from aquatic birds in Mazandaran Province, northern Iran, Parasitology International, 65, pp. 151-158.
82. Feeny P.P. et al, 1968, Autumn migration in the South Caspian region, Ibis, 110, pp. 35-68.
83. Fereidouni S.R. et al., 2005, Isolation and identification of avian influenza viruses from migratory birds in Iran, The Veterinary Record, 157 (17), 526. https://doi.org/10.1136/vr.157.17.526i
84. Fereidouni S.R. et al., 2005, Serological monitoring of avian influenza in migratory birds of Iran, Archives of Razi Institute, 60 (1), pp. 11-20. https://doi.org/10.22092/ARI.2005.103730
85. Fereidouni S.R. et al., 2005, Isolation and identification of avian influenza viruses from migratory birds in Iran, The Veterinary Record, 157 (17), 526. https://doi.org/10.1136/vr.157.17.526
86. Fereidouni S.R. et al., 2010, Avian influenza virus monitoring in wintering waterbirds in Iran, 2003-2007, Virology Journal, 7, pp. 1-14.
87. Fereidouni S.R. et al., 2011, West Nile virus monitoring in liver, kidney, brain and muscle: Health risk assessment for consumption of edible parts of birds: Are common coots the main reservoir of the virus in wetlands? Vector Borne Zoonotic Diseases, 11 (10), pp. 1377-1381.
88. Ferguson D.A., 1972, Waterfowl wintering, resting and breeding areas of the south-west Caspian lowlands, Wildfowl, 23, pp. 5-24.
89. Ferrer M. et al., 2008, Climate change and the conservation of migratory birds in Europe: Identifying effects and conservation priorities, Convention on the Conservation of European Wildlife and Natural Habitats Standing Committee, 28 th Meeting, Strasbourg, 24-27 November 2008, T-PUS/Inf(2008) 1 rev.
90. Flint P.L. et al., Wild bird surveillance for highly pathogenic avian influenza H5 in North America, Virology Journal, 12.
91. Friend M., 2006, Evolving changes in diseases of waterbirds. In: Boere G.C. et al. (eds), Waterbirds around the World, The Stationery Office, Edinburgh, pp. 412-417.
92. Fuller et al., 2010, Mapping the risk of avian influenza in wild birds in the US, BMC Infection Diseases, 10, 187.
93. Funk J., 2013, The impact of climate change on the mistiming of bird-resource phenologies, Concept, XXXVI.
94. Gadzevich D.V., 2019, Epidemiological monitoring of avian influenza in the Republic of Crimea, Veterinary Science Today, 1(28). https://doi.org/10.29326/2304-196X-2019-1-28-34-38.
95. Гадзевич Д. В. и др., 2019. Эпизоотологический мониторинг гриппа птиц и ньюкаслской болезни на территории Республики Крым в 2017–2018 гг. Научно-прикладные аспекты производства, переработки и ветеринарно-санитарного контроля сельскохозяйственной продукции: сборник научных трудов по материалам Национальной научно-практической конференции с международным участием (27–28 марта 2019 г.), ВПО Ярославская ГСХА, Ярославль, С. 13–21
96. Gadzevich D.V., 2021, Epidemiological monitoring of avian influenza in the Republic of Crimea in 2019–2020, Veterinary Science Today. https://doi.org/10.29326/2304-196X-2021-10-4-308-316
97. Gaidet N. et al., 2012, Understanding the ecological drivers of avian influenza virus infection in wildfowl: A continental-scale study across Africa, Proceedings of the Royal Society B, 279, pp. 1131-1141. https://doi.org/10.1098/rspb.2011-1417.
98. Гаврилов Н.Н., 1982, Численность и миграция черноголового хохотуна в природном очаге аробовирусов на о. Жемчужный (С. Каспий), Экология вирусов, Москва, 1982, С. 104-105.
99. Гаврилов Н.Н., 1986, Учет численности голенастых, веслоногих и чайковых птиц в колониальных гнздовьях дельты Волги и Северного Каспия, Всес. совещ. по проблеме кадастра и учета животного мира, Тезисы, Ч. П., Москва, С. 252-253.
100. Гаврилов Н.Н., 1989, Многолетний мониторинг популяций птиц в дельте Волги и на Северном Каспии как основа мероприятий по их охране и рациональному использованию // Проблемы изучения охраняемых природных территорий Астраханской области: Материалы к научно-практической конф., посвященной 70-летию Астраханского заповедника, Б.и., Астрахань, 1989, С. 27 - 37.
101. Гаврилов Н.Н., Кривоносов Г.А., 1981, Колониальные гнездовья чайковых птиц на о. Жемчужный (Северный Каспий). Размещение и состояние гнездовий околоводных птиц на территории СССР, Москва, С. 15-16.
102. Ghobaditerra M. et al., 2015, An overview on the present situation of cercasial dermatitis: A neglected zoonotic disease in Iran and the world, Journal of Mazandaran University of Medical Sciences, 24, pp. 440-460.
103. Gilbert V. et al., 2008, Climate change and avian influenza, Revue scientifique et technique, 27 (2), pp.459-466.
104. Gistov A.P., 2004, Waterbird monitoring in North Caspian Seas in 2003, Kazakhstan Ornithological Newsletter, Almaty, pp. 19-20.
105. Gregory R.D. et al., 2009, An indicator of the impact of climate change on European bird populations, PlOS One, 4.
106. Guidelines for Avian Influenza and Information on Swine Influenza for Veterinary Professionals. (in Russian & Turkmen)
107. Gulenkin V.M. et al., 2008, Atlas of Highly Pathogenic Avian Influenza in the Territory of the Russian Federation, ARRIAH, Vladimir. (in Russian)
108. Gulyaeva, M. et al., 2018, Characterization of avian-like influenza A (H4N6) virus isolated from Caspian Seal in 2012, Virologica Sinica, 33, pp. 449–452.
109. Gulyaeva M.A. et al., 2018, Orthomyxo- and paramyxoviruses in marine mammals, South of Russia, Ecology, Development, 13 (1), pp. 154−165.
110. Jeong-Kim et al., 2009, Ducks: The “Trojan Horses” of H5NI influenza, Influenza and other respiratory viruses, 3 (4), pp. 121-128.
111. Hadipour M.M., 2010, Seroprevalence study of H9N2 avian influenza virus in backyard chickens around the Caspian Sea in Iran, Brazilian Journal of Poultry Science/Revista Brasiliana de Ciencia Avicola, January-March 2010, 12 (1), pp. 53-55.
112. Haig S.M. et al., 2019, Climate altered wetlands challenge waterbird use and migratory connectivity in arid landscapes, Nature, Scientific Reports, 9, 4666. https://www.doi.org/10.10.1038/s41598-019-41135-y
113. Hashemi S.M., 2020, Modeling the prevalence of avian influena in Guilan Province using data mining models and spatial information system in 2016: An ecological study, Journal of Rafsanjan University of Medical Science, 19 (7), pp. 677-692. https://doi.org/10.29252/irums.19.7.677
114. Heiss M. & Gauger K., 2011, Coastal bird migration at the Caspian shore of the Azerbaijan Republic in October 2007, Podoces, 6 (1), 99. 59-71.
115. Hill N.J. et al., 2016, Transmission of influenza reflects seasonality of wild birds across the annual cycle, Ecology Letters, 19, pp. 915–925.
116. Hiono T. et al., 2015, Genetic and antigenic characterization of H5 and H7 influenza viruses isolated from migratory water birds in Hokkaido, Japan and Mongolia from 2010 to 2014, Virus Genes, 51, pp. 57–68.
117. Hole D.G. et al., 2009, Projected impacts of climate change on a continental-scale protected area network, Ecology Letters, 12, pp. 420-431.
118. Hole D.G. et al., 2011, Towards a management framework for protected are networks in the face of climate change, Conservation Biology, 25, pp. 305-315.
119. Huaiyu Tian et al., 2015, Avian influenza H5N1 viral and bird migration networks in Asia, PNAS, January 2015, 112 (1), pp. 172-177.
120. Hule-Post D.J. et al., 2007, Molecular changes in the polymerase genes (PA and PB1) associated with high pathogenicity of H5N1 influenza virus in mallard ducks, Journal of Virology, 81, pp. 8515–8524.
121. Horman W.S.J. et al., 2018, The drivers of pathology in zoonotic avian influenza: The interplay between host and pathogen, Frontiers in Immunology, 9, 1812.
122. Information Note on “Avian Influenza and Migratory Birds”, Nature and Biodiversity Unit of DG Environment in consultation with the ORNIS Scientific Working Group, Version 20/07/2006.
123. Исаков Ю.А., 1940, Экология зимовки водоплавающих птиц на Южном Каспии, Тр. Всес. орнит. зап-ка Гассан-Кули, Вып.1, Москва.
124. Исаков Ю.А., Воробьев К.А., 1940, Обзор зимовок и пролета птиц на Южном Каспии, Тр. Всес. орнит. запка Гассан- Кули, Вып.1, Москва.
125. Isakov Y.A., 1949, The state of wintering waterfowl on the western coast of the Caspian Sea, Proceedings of the Central Office of Ringing, Part 7. (in Russian)
126. Isakov Y.A., 1967, MAR Project and Conservation of Waterfowl Breeding in the USSR. In: Salverda Z. (ed.), Proceedings of the 2nd European meeting on wildfowl conservation, Noordwijk aan zee, the Netherlands, May 1966, IWRB, pp. 125–138.
127. IUCN, 1987, A Directory of Wetlands of International Importance, IUCN, Gland, Switzerland and Cambridge, UK.
128. Iverson S.A., 2011, Migratory movements of waterfowl in Central Asia and avian influenza emergence: sporadic transmission of H5N1 from east to west, International Journal of Avian Science, 153 (2), pp. 279-292. https://doi.org/10.1111/j.1474-919X.2010.01095.x
129. Jeong-Kim et al., 2009, Ducks: The “Trojan Horses” of H5NI influenza, influenza and other respiratory viruses, 3 (4), pp. 121-128.
130. John H.R. et al., 2000, Migratory birds and spread of West Nile virus in the Western Hemisphere, Emerging Infectious Diseases, 6 (4), pp. 319-328.
131. Jourdain E et al., 2010, Influenza virus in a natural host, the mallard: experimental infection data, PLoS ONE, 5, e8935. https://doi.org/10.1371/journal.pone.0008935
132. Kacyinskz P. et al., Rapid Assessments of Wildlife in Turkmenistan 2018, NINA (Norwegian Institute for Nature Research), Report 1696.
133. Kalisinska E., 2004, Using the Mallard to biomonitor heavy metal contamination of wetlands in north-western Poland, Science of Total Environment, 320, pp. 145-161. https://doi.org/10.1016/j.scitotenv.2003.08.04
134. Karamendin K. et al., 2014, Circulation of avian paramyxoviruses in wild birds of Kazakhstan in 2002-2003, Virology Journal, 13, Article No. 23. https://doi.org/10.1186/s12985-016-0476-8
135. Kawaoka Y., 1992, Evolution and ecology of influenza A viruses, Microbiology Reviews, 56, 152–179. https://doi.org/10.1111/j.1541-0420.2008.01180.x
136. Roselaar C.S. & Aliabadian M., 2007, A century of breeding bird assessment by Western travelers in Iran, 1870-1977, Podoces, 2 (7), pp. 77-96.
137. Kiers A., et al., 2008, Transmission of mycobacterium pinnipedii to humans in a zoo with marine mammals, International Journal of Tuberculosis and Lung Diseases, 12 (12), pp. 1469−1473.
138. Kilpatrick A.M. et al., 2006, Predicting the global spread of H5N1 avian influenza, PNAS, December 19, 2006, 103 (1).
139. Kirby J.S. et al., 2008, Key conservation issues for migratory bird and waterbird species in the world’s major flyways, Bird Conservation International, 18, pp. 549-573.
140. Koehler A.V. et al., 2008, Genetic evidence of intercontinental movement of avian influenza in a migratory bird: the northern pintail (Anas acuta), Molecular Ecology, 17, pp. 4754–4762. https://doi.org/10.1111/j.1365-294X.2008.03953.x
141. Krauel J.J. & McCracken G.F., 2013, Recent advances in bat migration research. In: Adams R. & and Pedersen S. (eds), Bat Evolution, Ecology, and Conservation, Springer, New York.
142. Kramer L.D., & Shi P.Y., 2007, West Nile virus, Lancet Neurology, 6 (2), pp. 171-181.
143. Krauss S et al., 2007, Influenza in migratory birds and evidence of limited intercontinental virus exchange, PLOS Pathogens, 3, e167. https://doi.org/10.1371/journal.ppat.0030167
144. Krauss S. et al., 2015, Long-term surveillance of H7 influenza viruses in American wild aquatic birds: are the H7N3 influenza viruses in wild birds the precursors of highly pathogenic strains in domestic poultry? Emerging Microbes and Infections, 4, e35. https://doi.org/10.1038/emi.2015.35
145. Krivenko V.G. (ed.), 1999, Wetlands in Russia, Vol. 1, Wetlands of International Importance, Wetlands International, AEME Publ. 52.
146. Krivenko V.G. & Vinogradov V.G., 2001, Current Status of Waterfowl Resources in Russia and Issues of its Conservation. http://www.biodat.ru/chm/vbu/index.htm
147. Kuiken T., 2013, Is low pathogenic avian influenza virus virulent for wild waterbirds? Proceedings of the Royal Society B, 280, 20130990. https://doi.org/10.1098/rspb.2013.0990
148. Кривоносов Г.А., 1976, Очаги массового гнездования чайковых птиц на Северном Каспии и факторы, определяющие длительность их существования, Экология вирусов, Вып. 1У Москва, С. 46-51.
149. Кривоносов Г.А. и др., 1987, Современное состояние, охрана и изучение колониальных гнездовий чайковых птиц на о. Малом Жемчужном (Сев. Каспий), II Всесоюз. конф. по миграциям птиц: тез. сообщений, ч. 1, Алма - Ата.
150. Kulak M.V. et al., 2010, Surveillance and identification of influenza A viruses in Wild aquatic birds in the Crimea, Ukraine (2006–2008), Avian Diseases, 54(3), pp. 1086-1090. https://doi.org/10.1637/9272-020510-ResNote.1
151. Latorre-Margalef N. et al., 2009, Effects of influenza A virus infection on migrating mallard ducks, Proceedings of Biological Sciences, 276, pp. 1029–1036.
152. Latorre-Margolef N. et al., 2017, Competition between influenza A virus subtypes through heterosubtype immunity modulates re-infection and antibody dynamics in the mallard duck, PLOS Pathogens, 13 (6). https://doi.org/10.1341/journal,ppat.1000419.
153. Lemey P. et al., 2010, Phylogeography takes a relaxed random walk in continuous space and time, Molecular Biology and Evolution, 27, pp. 1877–1885.
154. Long J.S. et al., 2019, Host and viral determinants of influenza A virus species specificity, National Reviews Microbiology, 17 (2), pp. 1167-1169.
155. Lupiani B. & Reddy S.M., 2009, The history of avian influenza, Comparative Immunolology Microbiology and Infectious Diseases, 32, pp. 311– 323. https://doi.org/10.1016/j.cimid.2008.01.004
156. Львов Д. К., Иличев В.Д.,1979, Миграсий птис и перенос возбудителеи инфексии (эхолого-географические свиязи птис с возбудателями инфексии), Наука, Москва
157. Львов Д. К. и др., 2006, Изоляция штаммов вируса гриппа А/Н5N1 от домашних и диких птиц в период эпизоотии в Западной Сибири (июль 2005 г.) и их депонирование в государственную коллекцию вирусов (08 августа 2005 г.), Вопросы вирусологии, 1 (51), С. 11–14.
158. Львов Д. К. и др., 2006, Эпизоотия среди лебедей-шипунов (Cygnus olor) в нижней дельте Волги (ноябрь 2005 г.), вызванная высокопатогенным вирусом гриппа А/Н5N1, Вопросы вирусологии, 3 (51), С. 10–16.
159. Львов Д.К., Ильичев В.Д., 1979, Миграции птиц и перенос возбудителей инфекции, (Экол.-геогр. связи птиц с возбудителями инфекции), Наука, Москва.
160. Львов Д. К. и др., 2006, Изоляция высокопатогенных (HPAI) штаммов вируса гриппа A/H5N1 от диких птиц в очаге эпизоотии на озере Убсу-Нур (июнь 2006 г.) и их депонирование в Государственную коллекцию вирусов РФ (3 июля 2006 г.), Вопросы вирусологии, 6 (51), С. 14–18.
161. Lycett S.J. et al., 2019, A brief history of bird flu, Philosophical Transactions of the Royal Society B, 374: 20180257. https://doi.org/10.1098/rstb.2018.0257
162. Maclean I.M.D. et al., 2007, The effects of climate change on migrating birds within the African-Eurasian Flyway, BTO Research Paper No. 486.
163. Mahdavi S.A. et al., 2013, Survey of migratory birds (Anatidae: Anas platyrynchos) for schistosome parasites from Mazandaran Province, northern Iran, Iranian Journal of Parasitology, 8, pp. 333-336.
164. Макаров В.В., Бучацкий Л.П., 2021, О природе вирусов и радикальном изменении их таксономии, Ветеринария сегодня, 10 (4), С. 266-270.
165. Malkhazova S.M. et al., 2018, Influence of climatic factor on naturally determined diseases in a regional context, Geography, Environment, Sustainability, 11 (1), pp. 157-170. https://doi.org/10.24057/2071-9388-2018-11-1-157-170
166. Mansoori J., 1983, National Report on Iran’s Wetlands of International Importance as Habitat for Waterfowl. Prepared for the Groningen Conference, Netherlands, in May 1984.
167. Mansoori J., 2009, The avian community of five Iranian wetlands, Miankaleh, Fereidoun-Kenar, Buyagh, Anzali and Levandevit, in the South Caspian Lowlands, Podoces, 4 (1), pp. 44-49.
168. Mänz B. et al., 2013, Adaptation of avian influenza A virus polymerase in mammals to overcome the host species barrier, Journal of Virology, 87, pp. 7200–7209.
169. Marchenko V.Y. et al., 2012, Ecology of influenza virus in wild bird populations in Central Asia, Avian Diseases, 56 (1), pp. 234-237. https://doi.org/10.1637/9834-061611-ResNote.1
170. Mehrabadi F. et al., 2020, Avian influenza (H9N2 subtype) in Iranian broiler farms: A cross-sectional study, Archives of Razi Institute, 75 (3), 2020, pp. 359-366. https://doi.org/10.22092/ARI.2019.123942.1266
171. Mehranpour J. et al., 2012, Avian influenza virus in migratory and resident birds during migration season in Boushehr, Iran, Turkish Journal of Veterinary and Animal Sciences, 36, pp. 446-450. https://doi.org/103906/vet-1105-25
172. Miller-Rushing A. et al., 2008, Bird migration times, climate change, and changing population, Global Change Biology, 14, pp. 1959-1972. https://doi.org/10.1111/j.1365-2486.2008.01619.x
173. Mine J. et al., 2019, Phylogeographic evidence for the inter- and intracontinental dissemination of avian influenza viruses via migration flyways, PLOS ONE, 14, e0218506.
174. Ministry of Agriculture and Environment Protection of Turkmenistan, 2018, National Strategy of Turkmenistan on Climate Change
175. Ministry of Agriculture of the Republic of Kazakhstan, Committee for Veterinary Control and Supervision, 2021, Epizootic Situation in Terms of Avian Influenza in the Republic of Kazakhstan, Nur-Sultan.
176. Министерство здравоохранения и медицинской промышленности Туркменистана, 2010, План противоэпизоотических мероприятий по противодейство пандемии высокопатогенного птичьего гриппа, Ашгабат.
177. Министерство здравоохранения и медицинской промышленности Туркменистана, 2010, Руководство по птичьему гриппу и информатсия о гриппе свиней для ветеринарних специалистов, Ашгабат.
178. Ministry of Health and Medical Industry of Turkmenistan, 2020, Center for the Control and Prevention of Infectious Diseases. http://www.saglykhun.gov.tur
179. Ministry of Nature Protection of Turkmenistan, 2002, Biodiversity Strategy and Action Plan for Turkmenistan, Ashgabat.
180. Modiri Hamadan A. et al., 2021, Detection of influenza A viruses in migratory birds at live bird markets of Iran, Iranian Journal of Virology, 15 (2), pp. 82-87.
181. Mohsin H. et al., 2021, Potential roles of viral metagenomics as a surveillance tool for the early detection of emerging novel pathogens, Archives of Microbiology, 203 (3), pp. 865-872.
182. Møller A.P. et al., 2022, Rapid reduction in migration distance in relation to climate in a long-distance migratory bird, Current Zoology, 68 (2), pp. 233-225. http://doi.org/10.1093/cz/zoab053
183. Møller A.P. et al., 2010, Climate change affects the duration of the reproductive season in birds, Journal of Animal Ecology, 79, pp. 777-784. http://doi.org/10.1111/j.1365-2656.2010.01677.x
184. Monitoring of Waterbirds in Azerbaijan: Manual, 2011, Joint Publishing of GIZ and Ministry of Ecology and Natural Resources of Azerbaijan, Baku.
185. Mostafa A. et al., 2018. Zoonotic potential of influenza A viruses: A comprehensive overview, Viruses, 2018, 10, 497.
186. Motahhr M. et al., 2016, The arrival of highly pathogenic avian influenza viruses H5N8 in Iran through two windows, Virus Genes, 58, pp. 527–539.
187. Mrashi S.M. et al., 2020, Surveillance of highly pathogenic avian influenza viruses (H5Nx subtypes) in wild birds in Iran, 2014-2019, Archives of Razi Institute, 76 (3), pp. 487-498.
188. Muzyka D. et al., 2016, Isolation and genetic characterization of avian influenza viruses Isolated from wild birds in the Azov-Black Sea Region of Ukraine (2001–2012), Avian Diseases, 60, pp. 365–377.
189. Muzyka D. et al., 2016, Isolation and genetic characterization of avian influenza viruses isolated from wild birds in the Azov-Black Sea Region of Ukraine (2001–2012), Avian Diseases, 60 (1) Supplement: Ninth International Symposium on Avian Influenza (May 2016), pp. 365-377. https://doi.org/10.1637/11114-050115-Reg.
190. Nakayama M. et al., 2019, A novel H7N3 reassortant originating from the zoonotic H7N9 highly pathogenic avian influenza viruses that has adapted to ducks, Transboundary Emerging Diseases Journal, 66, pp. 2342–2352.
191. Naguib M.M. et al., 2019, Global patterns of avian influenza A(H7): Virus evolution and zoonotic threats, FEMS Microbiology Reviews, November 2019, 43 (6), pp. 608-621. https://doi.org/10.1093/femsre/fuz019.
192. Nagy A. et al., 2017, A brief summary of the epidemiology and genetic relatedness of avian influenza H9N2 virus in birds and mammals in the Middle East and North Africa, Epidemiology and Infection, 2017, 145, pp. 3320–3333.
193. Newton I., 2008, The Ecology of Bird Migration, Academic Press, London.
194. Nielsen B.P., Further spring observations on the birds of Gilan, Northern Iran, In: Birds of Gilan, N. Iran.
195. Nippon Koei Co. Ltd, 2019, Mid-Term Plan for Conservation of the Anzali Wetland for 2-20-2030 (Prepared under the Anzali Wetland Ecological Management Report – Phase II), Department of the Environment, Gilan Provincial Government, Islamic Republic of Iran and Japan International Cooperation Agency (JICA), May 2019.
196. Nishiura H., 2009, How to find natural reservoir hosts from endemic prevalence in a multi-host population: A case study of influenza in waterfowl, Epidemics, 1, pp. 118-128.
197. Nourani E. et al., 2015, An assessment of threats to Anatidae in Iran, Bird Conservation International, 25, pp. 245-257. https://doi.org/10.1017/So959270914000264.
198. Нурыев А.Т. и др., 2008, Хазарский государственный заповедник, Ашхабад.
199. OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, 2018. https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.03.04_AI.pdf
200. Olsen B. et al., 2006, Global patterns of influenza A virus in wild birds, Science, 312, pp. 384-388.
201. Olson D.M. et al., 2001, Terrestrial ecoregions of the world: a new map of life on Earth, BioScience, 51, pp. 933-938.
202. Onishchenko G.G. et al, 2007, Molecular-biological analysis of avian virus isolates, which caused epizootics on the south of west Siberia and in Crimea, Zhurnal Mikrobiologii Epidemiologii i Immunobiologii, 5, pp. 28-32.
203. Papp Z. et al., The ecology of avian influenza viruses in wild birds, Science, 312, pp. 384-388.
204. Pearson R.G. & Dawson T.P., 2003, Predicting the impact of climate change on the distribution of species: Are bioclimate envelope models useful? 12, pp. 361-371.
205. Поярков Н. Д. и др., 2011, Полевой определитель гусеобразных птиц России, Всероссийский научно- исследовательский ин-т охраны природы, Москва.
206. Prange M. et al., 2020, The other side of sea level change, Communication, earth and Environment, 1:69. https://doi.org/10.1038/s43247-020-00075-6
207. Rainio K., 2008, Climate change effects on bird migration, Turun Uliopiston Jolkaisuta Annales Universitatus Turkuensis, Sarja-Ser. All Osa-Tom 230, Biologica-Geographica-Geologica, Turun Uliopisto, Turku.
208. Recht J. et al., 2020, Host diversity and origin of zoonoses: The ancient and the new, Animals, 10 (9), Article No. 1672.
209. Reed K.D. et al., 2003, Birds, migration and emerging zoonoses: West Nile virus, lyme disease, influenza A and enteropathogens, Clinical Medical Research., 1 (1), pp. 5-12.
210. Regemes L.A., 2008, Waterfowl toxicology: A review, Veterinary Clinics of North America: Exotic Animal Practice, 11, pp. 283-300.
211. Rose K. et al., 2006, FAO Animal Production and Health Manual, Wild Bird HPAI Surveillance Sample Collection from Healthy, Sick and Dead Birds, Food and Agricultural Organization of the United Nations, Rome.
212. Русанов Г.М., Гаврилов Н.Н., 2001, Состояние колониального гнездовья чаек и крачек на острове Малый Жемчужный на Северном Каспии, Новости в мире птиц. Информационный бюллетень Союза охраны птиц России, N 2. Москва.
213. Русанов Г.М., Мошонкин Н.Н., 2000, Остров Малый Жемчужный, Ключевые орнитологические территории России, Том 1, Ключевые орнитологические территории международного значения в Европейской России, Под редакцией Свиридовой Т.В., Зубакина В.А., Москва, С. 502-503.
214. Rusev I.I., 2015, Role of migratory birds in the introduction and spread of highly pathogenic avian influenza in Ukraine, Visnik SumDU, 2006, 8 (9), pp. 29-41. (in Russian)
215. Rustamov E.A., 1994, Ecological structure of the bird population in the Transcaspian region: Cartographic analysis and problems of conservation. In: Fet V. & Atamuradov K.I. (eds), Biography and Ecology of Turkmenistan, Monographicae Biologicae, 72, Springer, Dordrecht.
216. Рустамов Э.А. (ред), 2009, Ключевые орнитологические территории Туркменистана, МОЛ, Ашхабад.
217. Rustamov E.A. et al., 2009, Important Bird Areas in Turkmenistan, Ashgabat.
218. Sabirovic M. et al., 2005, Highly Pathogenic Avian Influenza (H5N1) in Eastern Europe. Defra (Department for Environment, Food and Rural Affairs), International Animal Disease Monitoring Team, International Animal Health Division, London.
219. Schaefer H.C. et al., 2008, Impact of climate change on migratory birds: Community assemblage versus adaptation, Global Ecology and Biogeography, 17, pp. 38-49.
220. Shestоpalov A.M. et al., 2016, Results of long-term (2006-2016) avian influenza surveillance in wild birds of Uus Nuur Lake, South of Russia, Ecology, Development, 11 (3), pp. 106-119. https://doi.org/10.18470/1992-1098-3-107-119
221. Shestopalov A.H. et al., 2022, Wild animal migration as a potential threat of introduction of new viruses into Russia, Herald of the Russian Academy of Sciences, 92 (8), pp. 497-504. Russian text published in Вестник Российской академии наук, 2022, 92 (8), pp. 766-774.
222. Скляренко С.Л. и др. (ред), 2008, Ключевые орнитологические территории Казахстана, АСБК, Алматы.
223. Scott B., 2007, A review of the status of breeding waterbirds in Iran in the 1970s, Podoces, 2, pp.1-21.
224. Scott D.A. & Rose P.M., 1996, Wetlands International Atlas of the Anatidae Populations in Africa and Western Eurasia; Wetlands International, Wageningen, The Netherlands.
225. Scott D.H. & Smart M., 1991, Wetlands of the Seistan Basin, South Caspian and Fars, Islamic Republic of Iran, Ramsar Convention Monitoring Procedure Report No. 26, Ramsar Convention Bureau, Gland.
226. Sharp G.B. et al., 1993, Wild ducks are the reservoir for only a limited number of influenza a subtypes, Epidemiology and Infection, 110 (1), pp. 161-176.
227. Sharshov R. et al., 2019, Characteristics and phylodynamics of Reassortment H12Nk viruses in northern Eurasia, MDPI, Microorganisms, 7, 643. http://doi.org/10.3390/microorganisms7120643
228. Sharti M., 2020, Detection of West Nile virus by real-time PCR in crows in northern provinces of Iran, Journal of Vector Borne Diseases, 57, March 2020, pp. 37-39.
229. Shestopalov A.M. et al., 2006, H5N1 influenza virus, domestic birds, western Siberia, Russia, Emerging Infectious Diseases, 12 (7), pp. 1167–1169.
230. Sinkarimi M.H. et al., 2013, The Study of Waterfowl Organs as Bioindicators of Metals Pollution in southeastern Caspian Sea, MSc. Thesis, Birjand University and Department of the Environment, Birjand, Iran.
231. Sinkarimi M.H. et al., 2015, Potential human health risk assessment of heavy metals consumption of Anas strepera and Anas crecca in Southeastern Caspian Sea, Podoces, 9, pp. 54-59.
232. Sinka-Karimi M.H. et al b, 2015, Study on metal concentrations in tissues of Mallard and Pochard from two major wintering sites in Southwestern Caspian Sea, Iran, Bulletin of Environmental Contamination and Toxicology, 95, pp. 292-297. https://doi.org/10.1007/s001128-015-1591-8
233. Sivay M.V. et al., 2012, Surveillance of influenza A virus in wild birds in the Asian portion of Russia in 2008, Avdi, 56, pp. 456–463.
234. Sparagano O. et al., 2015, Arthropods and associated arthropod-borne disease transmitted by migrating birds: The case of ticks and tick-borne pathogens, Veterinary Parasitology, 213 (1-2), pp. 61-66.
235. Stallknecht D.E., 2003, Ecology and epidemiology of avian influenza viruses in wild bird populations: waterfowl, shorebirds, pelicans, cormorants, etc., Avian Diseases, 47, pp. 61-69.
236. Sultankulova K.T. et al., 2022, Evidence for flock transmission of individual subtypes and strains of avian influenza viruses: A monitoring study of wild birds in Kazakhstan, Virus Research, 320, 15 October 2022, 198898. https://doi.org/10.1016/j.virusres.2022.198898
237. Sultanov E.H., 2004, An ornithological study of the Azerbaijan Caspian coast, islands and regions of oil production, Sandgrouse, 26 (2), pp. 112-126.
238. Sultanov E.H., 2008, Recent waterbird counts in Gyzylagach, the Azerbaijan Republic’s Most important Ramsar site, with comments on conservation, Podoces, 3 (1/2), pp. 31-38.
239. Sultanov E. et al., 2005, Manual for Special Protected Areas and Important Bird Areas, Azerbaijan Ornithological Society Publishing, Baku. (in Azerbaijani and Russian)
240. Surveillance for Early Detection of Highly Pathogenic Avian Influenza HPA1 H5N1 in Wild Birds: 2007-08, Washington Interagency Sample Plan, August 20, 2007.
241. Suttie A. et al., 2018, Detection of low pathogenicity influenza A(H7N3) virus during duck mortality event, Cambodia, Emerging Infectious Diseases, 24, pp. 1103–1107. https://doi.org/10.3201/eid2406.172099
242. Suttie A. et al., 2019, Inventory of molecular markers affecting biological characteristics of avian influenza A viruses, Virus Genes, 2019, 55, pp. 739–768.
243. Swayne D.E. et al., 1998, A Laboratory Manual for the Isolation and Identification of Avian Pathogens, 4th Ed., American Association of Avian Pathologists Jacksonville, pp. 74–80.
244. Tian Z. et al., 2012, Complete nucleotide sequence of avian paramyxovirus Type 6 Strain JL, isolated from mallard ducks in China, Journal of Virology, 86 (23), 13112.
245. Tian H. et al., 2015, Avian influenza H5N1 viral and bird migration networks in Asia, Proceedings of the National Academy of Sciences USA, 112, pp. 172–177. https://doi.org/10.1073/pnas.1405216112
246. Tong, S. et al., 2012, A distinct lineage of influenza a virus from bats, Proceedings of the National Academy of Sciences USA, 109, 4269.
247. Terrestrial Code: OIE -World Organisation for Animal Health. Available online: https://www.oie.int/international-standard-setting/terrestrial-code/.
248. Training Programmes in Epidemiology and Public Health Interventions Network (TEPHINET). 2019. Support to the Central Asia Regional Field Epidemiology and Laboratory Training Program. https://www.tephinet.org/support-to-the-central-asiaregional-field-epidemiology-and-laboratory-training-program
249. Treschalina A. et al., 2022, Monitoring of avian influenza viruses and paramyxoviruses in ponds of Moscow and the Moscoe region, Viruses, 14, 2624. https://doi.org/10.3390/v14122624
250. Tuayev D.G., 1957, Results of the quantitative counts of surface-feeding ducks wintering in the Kyzylagach reserve, Reports of Azerbaijan Academy of Sciences, XII (3), pp. 339-342. (in Russian)
251. Turkmenistan Country Report on State of Central Asian Migratory Way, CMS/CAF/Inf.4.6
252. Turkmenistan, Journal of Sustainable Forestry, 9 (1-2), pp. 73-88.
253. Turkmenistan, GHS (Global Health Security) Index 2021.
254. Tyrlov A.K. et al., 1998, New information on migration routes and wintering areas of some bird species from the southern part of western Siberia, Mat. Rasprostr, Ptits Ural., Priural. Zapad. Sib., 3, pp. 189-192.
255. Umali P.V. et al., 2014, Surveillance of avian paramyxoviruses in migratory waterfowls in the San-in region of western Japan from 2006-2012, Journal of Veterinary Medical Science, 76 (3), pp. 423-430.
256. Unique ornithological reserve near Turkmen coast of Caspian Sea, Turkmenistan Materials, 8 August 2017.
257. U.S. Department of Health, Bureau of Public Affairs, South and Central Asia: U.S. Government Support to Combat Avian Pandemic Influence, 06/04/07.
258. USGS National Wildlife Health Center, An Early Detection System for Highly Pathogenic H5N1 in Wild Migratory Birds – Interagency Strategic Plan. http://www.nwhc.usgs.gov/publications/other/index.jsp
259. Vandegrift K.J. et al., 2010, Ecology of avian influenza viruses in a changing world, Annales of the New York Academy of Sciences, 1195, pp. 113-128.
260. Van Doren B.M., 2022, How migratory birds may have tracked past climate, PNAS, 119, (3), e2121738119. https://doi.org/10.1073/pnas.2121738119
261. Van Toor M. et al., 2018, As the duck flies: Estimating the dispersal of low pathogenic avian influenza viruses by migrating mallards, Frontiers in Ecology and Evolution, 6, 208. https://doi.org/10.3389/fevo.2018.00208
262. Васильев В.И. и др., 2009, Мониторинг численности водоплавающих птиц на туркменском побережье Каспийского моря в осенне-зимний период (1971-2005 гг.), Москва.
263. Veen J. et al., 2005, An Atlas of Movements of Southwest Siberian Waterbirds, Wetlands International, Wageningen, The Netherlands, 2005.
264. Venkatesh D. et al., 2018, Avian influenza viruses in wild birds: Virus evolution in a multihost ecosystem, Journal of Virology, 92, 15.
265. Verhagen J.H. et al., 2014, Migratory birds reinforce local circulation of avian influenza viruses, PLOS One, 9 (11): e112366. https://doi.org/10.1371/journal.pone.0112366
266. Verkuil Y. et al., 2006, Migrating Broad-billed Sandpipers achieve high fueling rates by taking a multi-course meal, Wader Study Group Bulletin, 110, pp.15-20.
267. Vilkov E.V., 2016, The genesis and evolution of the Caspian Sea lagoons as avifauna refuges at the transboundary scale, Open Journal of Marine Science, 6, pp. 115–124.
268. Visser M.E., et al., 2009, Climate change leads to decreasing bird migration distances, Global Change Biology, 15 (8), pp. 1859-1865. https://doi.org/10.1111/j.1365-2486.2009.01865.x
269. Volkova M.A. et al., 2019, Serological monitoring for avian influenza in the Russian Federation in 2019, Veterinary Science Today, 2, pp.76-82. https://doi.org/10.29326/2304-196X-2020-2-33-76-82
270. Воротилова Н. Г. и др., 2015, Мониторинг инфекционных болезней птиц в Республике Крым, Известия сельскохозяйственной науки Тавриды, 3 (166), C. 81-92.
271. Vuosalo-Tavakoli E. et al., 2018, Damgah: A traditional Caspian agroecosystem for trapping migratory waterfowl acting as a potential avian sanctuary, Anthropology of the Middle East, 13 (1), pp. 97-116. https://doi.org/10.3167/ame.2018.130108
272. Webster R.G. et al., 1981, Conjunctivitis in human beings caused by influenza A virus of seals, New England Journal of Medicine, 304 (15), 911.
273. Webster R.G. et al., 1992, Evolution and ecology of influenza A viruses, Microbiology Reviews, 56, 152.
274. Williams P.C. et al., 2021, Impact of climate change and biodiversity collapse on the global emergence and spread of infectious diseases, Journal of Paediatrics and Child Health, 57 (11), pp. 1811−1818.
275. Wille M. et al., 2011, Extensive geographic mosaicism in avian influenza viruses from gulls in the northern hemisphere, PLOS One, 6, e20064.
276. Wille M. et al., 2018, Where do all the subtypes go? Temporal dynamics of H8-H12 influenza А viruses in waterfowl, Virus Evolution, 4, vey025. https://doi.org/10.1093/ve/vey025
277. Wille M. et al., 2018, Alternate routes of influenza A virus infection in Mallard (Anas platyrynchos), Veterinary Research, 49: 110.
278. Williams P.C. et al., 2021, Impact of climate change and biodiversity collapse on the global emergence and spread of infectious diseases, Journal of Paediatrics and Child Health, 57 (11), pp. 1811-1818.
279. Wille M. & Barr I.G., 2022, Unprecedented outbreaks of the H5N1 highly pathogenic avian influenza virus raise concern, Science, 376 (2), pp. 459-460. https:// 10.1126/science.abo1232
280. Woolhouse M. & Gaunt E., 2007, Ecological origins of novel human pathogens, Critical Reviews in Microbiology, 33 (4), pp. 231-242.
281. World Bank, 2008, Turkmenistan Avian Influenza Control and Human Pandemic Preparedness and Response Project Environmental Assessment and Management Plan.
282. WHO Global Influenza Surveillance and Response System (GISRS), 2011, Report: Annex 5 WHO Collaborating Centres for Influenza Terms of Reference related to Work with Pandemic Influenza Preparedness Biological Materials. https://www.jstor.org/stable/resrep27870.15
283. World Health Organization, 2011, Manual for the Laboratory Diagnosis and Virological Surveillance of Influenza, World Health Organization, Geneva.
284. World Health Organization (WHO), June 2016, Joint External Evaluation of IHR Core Capacities of Turkmenistan.
285. The World Organisation for Animal Health (WOAH), 2018, Terrestrial Animal Health Code. http://www.oie.int/index.php?id=169&L=0&htmfile=chapitre_avian_influenza_viruses.htm.
286. World Organisation for Animal Health (WOAH) , Avian Influenza Portal https://www.woah.org/en/disease/avian-influenza/
287. Xiaohan Li et al., 2022, IOP Conf. Ser., Earth Environmental Science, 1011 012054. https://doi.org/10.1088/1755-1315/1011/1/012054
288. Yaghoobrazadeh Y. & Ghasempoori S.M., 2006, MCCA-Finland Project on monitoring Damgahs, 2004-2005, Ornithological Report, Annotated Checklist of the Species and Subspecies, Iranian Institute of Plant Protection. In: Khaleghizadeh A. et al., 2017, Birds of Iran, Iranshenasi Publishing.
289. Yamane N. et al., 1982, Characterisation of avian paramyxoviruses isolated from feral ducks in nature, Microbiology Immunology, 26, pp. 557-568.
290. Yanyan Huang, 2014, Prevalence and Evolution of Avian Influenza Virus Infection in Newfoundland and Labrador, Ph.D. Dissertation, Department of Biology, Faculty of Science, Memorial University of Newfoundland.
291. Yoon S.W. et al., R.G, 2014, Evolution and ecology of influenza A viruses, Current Topics in Microbiology and Immunology, 2014, 385, pp. 359–375.
292. Youk S. et al., 2020, Highly pathogenic avian influenza A(H7N3) virus in poultry, United States, 2020, Emerging Infectious Diseases, 26, pp. 2966–2969.
293. Yoon S.W. et al., 2014, Evolution and ecology of influenza A viruses, Current Topics in Microbiology and Immunology, 385, pp. 359–375. https://www.10.1007/82_2014_396
294. Zeynalova S. et al., 2015, Biosurveillance of avian influenza and Newcastle disease viruses in the Barda region of Azerbaijan using real time RT-PCR and hemagglutination inhibition, Fronters of Microbiolology, 06 November 2015, Sec. Infectious Agents and Disease. https://doi.org/10.3389/fmicb.2015.01128
295. Zohari S. et al., 2008, Phylogenetic analysis of the non-structural (NS) gene of influenza A viruses isolated from mallards in Northern Europe in 2005, Virology Journal, 5, 147. https://doi.org/10.1186/1743-422X-5-147z
Review
For citations:
Petherbridge G., Gadzhiev A.A., Shestopalov А.М., Alekseev A.Yu., Sharshov K.A., Daudova M.G. An early warning system for highly pathogenic viruses borne by waterbird species and related dynamics of climate change in the Caspian Sea region: Outlines of a concept. South of Russia: ecology, development. 2022;17(4):233-263. https://doi.org/10.18470/1992-1098-2022-2-233-263