Preview

South of Russia: ecology, development

Advanced search

Use of environmentally safe micromycetes of the genus Rhodotorula to obtain fodder carotene‐containing concentrate

https://doi.org/10.18470/1992-1098-2022-4-61-78

Abstract

Aim. The aim of the work was to study the possibility of using an environmentally friendly strain of yeast of the genus Rhodotorula for the bioconversion into fodder carotenoid‐containing biomass of the secondary product of processing pea flour into a protein concentrate (whey).

Material and Methods. We used a new strain of Rhodotorula mucilaginosa 111 and by‐products of processing pea and chickpea flour into protein concentrates and potatoes into starch (whey). We used standard and special methods for the analysis of serum and microbial‐vegetable concentrate (FMVC) namely: chemical; biochemical; microbiological; and the determination of toxicity with ciliates.

Results. Optimal conditions for growing R. mucilaginosa 111 on pea whey were determined (temperature 16.9°C, pH 7.8, amount of inoculum 1.85%). More biomass was synthesized on pea whey than on chickpea and potato whey – 81 g/dm3. The mass fraction of protein in the biomass is 58.90±3.03% on dry matter and the rate of essential amino acids is 119– 243%. Lipids included 20% saturated and 78% unsaturated fatty acids, linoleic acid – 45.26±0.70%, oleic – 24.04±0.76%, palmitoleic – 6.46±0.31%, palmitic – 13.70±0.81%. The yeast produced phytoin derivatives, torulene, β‐carotene, torularodin and phytoin. FMVC from pea whey stimulated the growth of ciliates Tetrahymena pyriformis by 29.1%, from chickpea whey (by 18.6% more intensively than distilled water), while potato whey reduced its growth rate.

Conclusion. The dry biomass of the ecologically safe new yeast strain R. mucilaginosa 111 contained complete proteins, lipids, minerals, and carotenoids necessary for feeding animals. Thus liquid pea whey can be used for its biokonversions, while avoiding environmental pollution.

About the Authors

V. V. Kolpakova
All‐Russian Research Institute of Starch and Processing of Starch‐Containing Raw Materials – Branch of A.G. Lorkha Federal Potato Research Centre
Russian Federation

Valentina V. Kolpakova, Doctor оf Technical Sciences, Professor, Chief Researcher

11 Nekrasova, St, Kraskovo, Moscow Region 140051

Tel. +79152858450


Competing Interests:

The author declares no conflict of interest.



R. V. Ulanova
All‐Russian Research Institute of Starch and Processing of Starch‐Containing Raw Materials – Branch of A.G. Lorkha Federal Potato Research Centre; S.N. Vinogradsky Institute of Microbiology, Fundamental Foundations of Biotechnology Federal Research Centre, Russian Academy of Sciences
Russian Federation

Ruzaliya V. Ulanova

Kraskovo; Moscow


Competing Interests:

The author declares no conflict of interest.



D. S. Kulikov
All‐Russian Research Institute of Starch and Processing of Starch‐Containing Raw Materials – Branch of A.G. Lorkha Federal Potato Research Centre
Russian Federation

Denis S. Kulikov

Kraskovo


Competing Interests:

The author declares no conflict of interest.



V. A. Gulakova
All‐Russian Research Institute of Starch and Processing of Starch‐Containing Raw Materials – Branch of A.G. Lorkha Federal Potato Research Centre
Russian Federation

Valentina A. Gulakova

Kraskovo


Competing Interests:

The author declares no conflict of interest.



L. V. Vasilyeva
S.N. Vinogradsky Institute of Microbiology, Fundamental Foundations of Biotechnology Federal Research Centre, Russian Academy of Sciences
Russian Federation

Lina V. Vasilyeva

Moscow


Competing Interests:

The author declares no conflict of interest.



Yu. Yu. Berestovskaya
S.N. Vinogradsky Institute of Microbiology, Fundamental Foundations of Biotechnology Federal Research Centre, Russian Academy of Sciences
Russian Federation

Yulia Yu. Berestovskaya

Moscow


Competing Interests:

The author declares no conflict of interest.



E. G. Cheremnykh
Mental Health Research Center
Russian Federation

Elena G. Cheremnykh

Moscow


Competing Interests:

The author declares no conflict of interest.



A. A. Ashikhmin
Institute of Physicochemical and Biological Problems in Soil Science, Pushchino Scientific Centre for Biological Research, Russian Academy of Sciences
Russian Federation

Alexander A. Ashikhmin 

Pushchino


Competing Interests:

The author declares no conflict of interest.



References

1. Matilde С., Lippolis A., Fava F., Rodolfi L. Microbes: Food for the Future. Foods, 2021, vol. 10, no. 5, p. 971. DOI: 10.3390/foods10050971

2. Shurson G.C. Yeast and yeast derivatives in feed additives and ingredients animal feed science and technology. Animal Feed Science and Technology, 2018, vol. 235, pp. 60–76. DOI: 10.1016/j.anifeedsci.2017.11.010

3. Martiniano S., Philippini R., Franco-Marcelino P.R. Effect of selenium uptake on growth metabolism in yeasts for the production of enriched single-cell protein using agro-industrial by-products. Biomass Conversion and Biorefinery, 2020, 7 pp. DOI: 10.1007/s13399-020-00885-w

4. Kieliszek M., Kot A., Bzducha-Wróbel A., Stanisław Błażejak S. Biotechnological use of Candida yeasts in the food industry: A review. Fungal Biology Reviews, 2017, vol. 31, no. 4, pp. 185–198. DOI: 10.1016/j.fbr.2017.06.001

5. Kolodina E.N., Artem’eva O.A., Kotkovskaya E.N., Pavlyuchenkova O.V., Pereselkova D.A. The study of the biological safety of yeast of the genus Candida as a potential source of feed protein. Vestnik OrelGAU, 2016, vol. 5, no. 62, pp. 72–78. (In Russian) DOI: 10.15217/48484

6. Serba E.M., Sokolova E.N., Fursova N.A., Volkova G.S., Borshcheva Yu.A., Kurbatova E.I., Kuksova E.V. Obtaining biologically active additives based on enriched yeast biomass. Khranenie i pererabotka sel'khozsyr'ya [Storage and processing of agricultural raw materials]. 2018, vol. 2, pp. 74–79. (In Russian)

7. Frengova G.I., Beshkova D.M., Carotenoids from Rhodotorula and Phaffia: Yeasts of Biotechnological Importance. Journal of Industrial Microbiology and Biotechnology, 2009, vol. 36, no. 2, pp. 163–180. DOI: 10.1007/s10295-008-0492-9

8. Young A.J., Lowe G.M., Young A.J. and Lowe G.M. Antioxidant and Prooxidant Properties of Carotenoids. Archives of Biochemistry and Biophysics, 2001, vol. 385, no. 1, pp. 20–27. DOI: 10.1006/abbi.2000.2149

9. Shashkina M.Ya., Shashkin P.N., Sergeev A.V. The role of carotenoids in the prevention of the most common diseases. Drug therapy. Rossiiskii bioterapevticheskii zhurnal [Russian Journal of Biotherapy]. 2010, vol. 9, no. 1, pp. 77–86. (In Russian)

10. Kuzminova E.V., Semenenko M.P., Koshchaev A.G., Troshin A.N. Biological functions of carotenoids in the reproduction of cattle. Scientific journal of KubGAU, 2017, vol. 129, pp. 1124–1136. (In Russian) DOI: 10.21515/1990-4665-129-080

11. Lowe G.M., Booth L.A., Young A.J., Bilton R.F. Lycopene and beta-carotene protect against oxidative damage in HT29 cells at low concentrations but rapidly lose this capacity at higher doses. Free Radical Research, 1999, vol. 30, no. 2, pp. 141–151. DOI: 10.1080/10715769900300151

12. Saini R.K., Keum Y.-S., Daglia M., Rengasamy K.R. Dietary carotenoids in cancer chemoprevention and chemotherapy: A review of emerging evidence. Pharmacological Research, 2020, vol. 155, article number: 104730. DOI: 10.1016/j.phrs.2020.104730

13. Zhao B., Ren B., Guo R., Zhang W., Ma S., Yao Y., Yuan T., Liu Z., Liu X., Zhao B., et al. Supplementation of lycopene attenuates oxidative stress induced neuroinflammation and cognitive impairment via Nrf2/NF-κB transcriptional pathway. Food and Chemical Toxicology, 2017, vol. 109, pt. 1, pp. 505–516. DOI: 10.1016/j.fct.2017.09.050

14. Kaulmann A., Bohn T. Carotenoids, inflammation, and oxidative stress-implications of cellular signaling pathways and relation to chronic disease prevention. Nutrition Research, 2014, vol. 34, no. 11, pp. 907–929. DOI: 10.1016/j.nutres.2014.07.010

15. Juhyun Shin, Min-Ho Song, Jae-Wook Oh, Young-Soo Keum and Ramesh Kumar Saini, Pro-oxidant Actions of Carotenoids in Triggering Apoptosis of Cancer Cells: A Review of Emerging Evidence. Antioxidants, 2020, vol. 9, p. 532. DOI: 10.3390/antiox9060532

16. Orazova S.B., Karpenyuk T.A., Sharipov K.O., Azimkhanova B.B., Goncharova A.V. Study of the fatty acid composition and antimicrobial activity of total lipid extracts of green microalgae. Vestnik Kazakhskogo Natsional'nogo meditsinskogo universiteta [Bulletin of the Kazakh National Medical University]. 2017, vol. 3, pp. 240–242. (In Russian)

17. Saini R.K., Keum Y-S. Microbial platforms to produce commercially vital carotenoids at industrial scale: An updated review of critical issues. Journal of Industrial Microbiology and Biotechnology, 2019, vol. 46, no. 5, pp. 657–674. DOI: 10.1007/s10295-018-2104-7

18. Koschaev A.G., Kalyuzhny S.A., Koschaeva O.V., Gavrilenko D.V., Eliseev M.A. Functional feed additives from carotene-containing vegetable raw materials for poultry farming. Nauchnyi zhurnal KubGAU [Scientific journal of KubGAU]. 2013, vol. 93, pp. 334–343. (In Russian)

19. Korumilli T., Susmita M. Carotenoid production by Rhodotorula sp. on fruit waste extract as a sole carbon source and optimization of key parameters. Iranian Journal of Chemistry & Chemical Engineering-International. 2014, vol. 33, pp. 89–99.

20. Tang W., Wang Y., Zhang J., Cai Y., He Z. Biosynthetic Pathway of Carotenoids in Rhodotorula and Strategies for Enhanced Their Production. Applied microbiology and biotechnology, 2019, vol. 29, no. 4, pp. 507–517. DOI: 10.4014/jmb.1801.01022

21. Moliné M., Flores M.R., Libkind D., del Carmen D.M., Farías M.E., van Broock M. Photoprotection by carotenoid pigments in the yeast Rhodotorula mucilaginosa: the role of torularhodin. Photochemical & Photobiological Sciences, 2010, vol. 9, pp. 1145–1151. DOI: 10.1039/c0pp00009d

22. Buzzini P., Innocenti M., Turchetti B., Libkind D., van Broock M., Mulinacci N. Carotenoid profiles of yeasts belonging to the genera Rhodotorula, Rhodosporidium, Sporobolomyces, and Sporidiobolus. Canadian Journal of Microbiology, 2007, vol. 53, pp. 1024–1031. DOI: 10.1139/W07-068

23. Matselyukh B.P., Matselyukh D.Ya., Golembiovska S.L., Gural S.V. Isolation of Phaffia rhodozyma yeasts mutants under increased carotenoid content. Biotechnologia Acta, 2014, vol. 7, no. 4, pp. 49–53. DOI: 10.15407/biotech7.04.049

24. Alakra F., Saygün A., Yeşilçubuk N.S. Biotechnological production of lipids and carotenoids from Rhodosporidium toruloides Y27012. European Journal of Science and Technology, 2020, vol. 19, pp. 156–164. DOI: 10.31590/ejosat.708556

25. Wu C.C., Ohashi T., Kajiura H., Sato Y., Misaki R., Honda K., Limtong S., Fujiyama K. Functional characterization and overexpression of Delta 12-desaturase in the oleaginous yeast Rhodotorula toruloides for production of linoleic acid-rich lipids. Journal of Bioscience and Bioengineering, 2021, vol. 131, no. 6, pp. 631–639. DOI: 10.1016/j.jbiosc.2021.02.002

26. Caporusso A., Capece A., De Bari I. Oleaginous Yeasts as Cell Factories for the Sustainable Production of Microbial Lipids by the Valorization of Agri-Food Wastes. Fermentation-Basel, 2021, vol. 7, no. 2, p. 50. DOI: 10.3390/fermentation7020050

27. Papaniklaou S., Aggelis G. Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. European Journal of Lipid Science and Technology, 2011, vol. 113, no. 8, pp. 1031–1051. DOI: 10.1002/ejlt.201100014

28. Marova I., Carnecka M., Halienova A., Certik M., Dvorakova T., Haronikova A. Use of several waste substrates for carotenoid-rich yeast biomass production. Journal of Environmental Management, 2012, vol. 95, pp. 338–342. DOI: 10.1016/j.jenvman.2011.06.018

29. Gavrilenko D.V., Koshaev A.G. Biotechnology for obtaining a complex feed additive for poultry. Collection of scientific papers KNTsZV, 2019, vol. 8, no. 3, pp. 165–168. (In Russian) DOI: 10.34617/tdf5-y729

30. Abramova I.M., Soloviev A.O., Turshatov M.V., Krivchenko V.A., Kononenko V.V. Protein feedstuff production based on microbial biomass. IOP Conference Series-Earth and Environmental Science, 2020, vol. 548, article number: 082080. DOI: 10.1088/1755-1315/548/8/082080

31. Ng H.S., Kee P.E., Yim H.S., Chen P.-T., Wei Yu-H., Lan J.C.-W. Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts. Bioresource Technology, 2020, vol. 302, article number: 122889. DOI: 10.1016/j.biortech.2020.122889

32. Usmani Z., Sharma M., Sudheer S., Gupta V.K., Rajeev Bhat. R. Engineered Microbes for Pigment Production Using Waste Biomass. Current Genomics, 2020, vol. 21, no. 2, pp. 80–95. DOI: 10.2174/1389202921999200330152007

33. Kot A.M., Błażejak S., Kieliszek M., Gientka I., Bryś J., Reczek L., Pobiega K. Effect of exogenous stress factors on the biosynthesis of carotenoids and lipids by Rhodotorula yeast strains in media containing agro-industrial waste. World Journal of Microbiology and Biotechnology, 2019, vol. 35, no. 10, pp. 157. DOI: 10.1007/s11274-019-2732-8

34. Kot A., Błażejak S. Production of lipids and carotenoids by Rhodotorula gracilis ATCC 10788 yeast in a bioreactor using low-cost wastes. Biocatalysis and agricultural biotechnology, 2020, vol. 26, no. 4, article number: 101634. DOI: 10.1016/j.bcab.2020.101634

35. Bertacchi S., Pagliari S., Cantù C., Bruni I., Labra M., Branduardi P. Enzymatic Hydrolysate of Cinnamon Waste Material as Feedstock for the Microbial Production of Carotenoids. International Journal of Environmental Research and Public Health, 2021, vol. 18, no. 3, article number: 1146. DOI: 10.3390/ijerph18031146

36. Frengova G., Simova E., Beshkova D. Use of whey ultrafiltrate as a substrate for production of carotenoids by the yeast Rhodotorula rubra. Applied Biochemistry and Biotechnology, 2004, vol. 112, no. 3, pp. 133–141. DOI: 10.1385/abab:112:3:133

37. Qi F., Shen P., Hu R., Xue T., Jiang X., Qin L., Chen Y., Huang J. Carotenoids and lipid production from Rhodosporidium toruloides cultured in tea waste hydrolysate. Biotechnology for Biofuels, 2020, vol. 13, no. 74. DOI: 10.1186/s13068-020-01712-0

38. Schneider T., Graeff-Hönninger P.S. Lipid and carotenoid production by oleaginous red yeast Rhodotorula glutinis cultivated on brewery effluents. Energy, 2013, vol. 61, no. 1, pp. 34–43. DOI: 10.1016/j.energy.2012.12.026

39. Libkind D., van Broock M. Biomass and carotenoid pigment production by Patagonian native yeasts. World Journal of Microbiology and Biotechnology, 2006, vol. 22, no. 7, pp. 687–692. DOI: 10.33448/rsd-v9i4.3057

40. Kulikov D.S., Kolpakova V.V., Ulanova R.V., Chumikina L.V., Bessonov V.V. Biological processing of pea grain to obtain food and feed protein concentrates. Biotechnology, 2020, vol. 36, no. 4, pp. 49–58. (In Russian) DOI: 10.21519/0234-2758-2020-36-4-49-58

41. Goldstein V.G., Kovalenok V.A., Krivtsun L.V. et al. Investigation of parameters influencing coagulation of protein in potato juice. Achievements of science and technology of the agro-industrial complex, 2018, vol. 32, no. 5, pp. 78-80. (In Russian) DOI: 10.24411/0235-2451-2018-10520

42. Semenov G.V. Vakuumnaya sublimatsionnaya sushka [Vacuum freeze drying]. Moscow. DeLi plus Publ., 2013, 264 p. (In Russian)

43. GOST 10846-91. Zerno i produkty ego pererabotki. Metod opredeleniya belka [GOST 10846-91. Grain and products of its processing. Protein determination method]. Moscow, Standartinform Publ., 2009, 8 p. (In Russian)

44. GOST 13586.5-93. Zerno. Metod opredeleniya vlazhnosti [GOST 13586.5-93. Corn. Moisture determination method]. Moscow, Standartinform Publ., 2009, 6 p. (In Russian)

45. GOST Zerno. Metod opredeleniya zol'nosti [GOST 10847-2019. Corn. Ash content determination method]. Moscow, Standartinform Publ., 2019, 20 p. (In Russian)

46. GOST 29033-91. Zerno i produkty ego pererabotki. Metod opredeleniya zhira [GOST 29033-91. Grain and products of its processing. Fat determination method]. Standards Publ., 2004, 5 p. (In Russian)

47. Nechaev A.P., Traubenberg S.E., Kochetkova A.A. et. al. Pishchevaya khimiya: Laboratornyy praktikum. Posobiye dlya vuzov [Food Chemistry: Laboratory Workshop. Allowance for universities]. St. Petersburg, GIORD Publ., 2006, 304 p. (In Russian)

48. Dietary protein quality evaluation in human nutrition: Report of an FAO Expert Consultation, Rome: FAO. 2013, 66 p.

49. ISO 13903:2005. Korma, kombikorma. Metod opredeleniya soderzhaniya aminokislot [ISO 13903:2005. Feeds, compound feeds. Method for determination of amino acids]. Moscow, Standartinform Publ, 2020, 20 p. (In Russian)

50. Ashikhmin A., Makhneva Z., Bolshakov M., Moskalenko A. Incorporation of spheroidene and spheroidenone into light-harvesting complexes from purple sulfur bacteria. Journal of Photochemistry and Photobiology B: Biology, 2017, vol. 170, pp. 99–107. DOI: 10.1016/j.jphotobiol.2017.03.020

51. Gall A., Henry S., Takaichi S., Robert B., Cogdell R.J. Preferential incorporation of coloured-carotenoids occurs in the LH2 complexes from non-sulphur purple bacteria under carotenoid-limiting conditions. Photosynthesis Research, 2005, vol. 86, pp. 25–35. DOI:10.1007/s11120-005-3481-0

52. Cheremnykh E.G., Kuleshin A.V., Kuleshina O.N. Biotesting of food additives on ciliates. Vestnik RUDN, seriya Ekologiya i bezopasnost' zhiznedeyatel'nosti [Bulletin of RUDN University, series Ecology and life safety]. 2011, vol. 3, pp. 5–12. (In Russian)

53. Latha B.V., Jeevaratnam K., Murali H.S., Manja K.S. Influence of growth factors on carotenoid pigmentation of Rhodotorula glutinis DFR-PDY from natural source. Indian Journal of Biotechnology. 2005, vol. 4, pp. 353–357.

54. Kot A.M., Błażejak S., Kurcz A., Gientka I., Kieliszek M. Rhodotorula glutinis–potential source of lipids, carotenoids, and enzymes for use in industries. Applied Microbiology and Biotechnology. 2016, vol. 100, no. 14, pp. 6103–6117. DOI: 10.1007/s00253-016-7611-8

55. Goodwin T.W. Biosynthesis of carotenoids. The biochemistry of the carotenoids, vol 1. Chapman and Hall. In: Goodwin T.W. (ed). 1980, pp. 33–76. DOI: 10.1007/978-94-009-5860-9_2

56. Souza Filho P.F., Nair R.B., Andersson D., Lennartsson P.R., Taherzadeh M.J. Vegan-mycoprotein concentrate from pea-processing industry byproduct using edible filamentous fungi. Fungal Biology and Biotechnology, 2018, vol. 2, no. 5, p. 5. DOI: 10.1186/s40694-018-0050-9

57. Zhang Z., Zhang X., Tan T. Lipid and carotenoid production by Rhodotorula glutinis under irradiation/high-temperature and dark/low-temperature cultivation. Bioresource Technology, 2014, vol. 157, pp. 149–153. DOI: 10.1016/j.biortech.2014.01.039

58. Vijayalakshmi G., Shobha B., Vanajakshi V., Divakar S., Manohar B. Response surface methodology for optimization of growth parameters for the production of carotenoids by a mutant strain of Rhodotorula gracilis. European Food Research and Technology, 2001, vol. 213, no. 3, pp. 234–239. DOI: 10.1007/s002170100356

59. Bhosale P., Gadre R.V. Manipulation of temperature and illumination conditions for enhanced beta-carotene production by mutant 32 of Rhodotorula glutinis. Letters in Applied Microbiology, 2002, vol. 34, no. 5, pp. 349–353. DOI: 10.1046/j.1472-765x.2002.01095.x

60. Cescut J., Fillaudeau L., Molina-Jouve C., Uribelarrea J.-L. Carbon accumulation in Rhodotorula glutinis induced by nitrogen limitation. Biotechnology for Biofuels, 2014, vol. 7, no. 164. DOI: 10.1186/s13068-014-0164-0

61. Wiebe M.G., Koivuranta K., Penttila M., Ruohonen L. Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates. BMC Biotechnology, 2012, vol. 12, no. 1, pp. 26. DOI: 10.1186/1472-6750-12-26

62. Yaegashi J., Kirby J., Ito M., Sun J., Dutta T., Mirsiaghi M., Sundstrom E.R., Rodriguez A., Baidoo E., Tanjore D., Pray T. Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts. Biotechnology for Biofuels, 2017, vol. 10, no. 1, pp. 241. DOI: 10.1186/s13068-017-0927-5

63. Tkachenko А., Tigunova Е., Schulga S. Microbial lipids are an alternative raw material for biofuel. Microbiology and Biotechnology, 2012, vol. 3, pp. 17–33. DOI: 10.18524/2307-4663.2012.3(19).92616

64. Szotkowski M., Byrtusova D., Haronikova A., Vysoka M., Rape M., Shapaval V., Marova I. Study of Metabolic Adaptation of Red Yeasts to Waste Animal Fat Substrate. Microorganisms, 2019, vol. 7, no. 11, pp. 578. DOI: 10.3390/microorganisms7110578

65. Zhao X., Hu C., Wu S., Shen H., Zhao Z. Lipid production by Rhodosporidium toruloides Y4 using different substrate feeding strategies. Journal of industrial microbiology and biotechnology, 2011, vol. 38, no. 5. pp. 627–632. DOI: 10.1007/s10295-010-0808-4

66. Li Y., Zhao Z. Kent, Bai F., High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme and Microbial Technology, 2007, vol. 41, pp. 312–317. DOI: 10.1016/j.enzmictec.2007.02.008

67. Chervyakova O.P. Obtaining microbial biomass enriched with carotenoids. Uspekhi v khimii i khimicheskoi tekhnologii [Advances in chemistry and chemical technology]. 2010, vol. 24, no. 11(116), pp. 51–53. (In Russian)

68. Simpson K.O., Nakayama T.S., Chichester S.O. Biosynthesis of yeast carotenoids. Journal of Bacteriology. 1964, vol. 88, no. 6, pp. 1688–1694.

69. Demidenko G.A., Shuranov V.V. Evaluation of feed toxicity using Paramecium caudatum ciliates. Vestnik Krasnoyarskogo gosudarstvennogo agrarnogo universiteta [Bulletin of the Krasnoyarsk State Agrarian University]. 2015, vol. 10, pp. 5–11. (In Russian)

70. Seregina O.B., Leonidov N.B. Protozoa as an alternative biological test object in pharmacy. Farmatsiya [Pharmacy]. 2003, vol. 4, pp. 43–45. (In Russian)


Review

For citations:


Kolpakova V.V., Ulanova R.V., Kulikov D.S., Gulakova V.A., Vasilyeva L.V., Berestovskaya Yu.Yu., Cheremnykh E.G., Ashikhmin A.A. Use of environmentally safe micromycetes of the genus Rhodotorula to obtain fodder carotene‐containing concentrate. South of Russia: ecology, development. 2022;17(4):61‐78. (In Russ.) https://doi.org/10.18470/1992-1098-2022-4-61-78

Views: 461


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1992-1098 (Print)
ISSN 2413-0958 (Online)