Inhibitory activity of aqueous extracts of tea compositions, individual ingredients for their preparation and some plants against replication of Herpes simplex virus type 2 in vitro
https://doi.org/10.18470/1992-1098-2022-3-135-152
Abstract
Aim. In vitro analysis of the inhibitory activity of aqueous extracts of tea compositions, plant raw materials and as well as plants from different families against replication of Herpes simplex virus type 2.
Material and Methods. The viral strain MS of HSV‐2 was passivated on Vero cell culture. Antiviral (inhibitory) activity of aqueous extracts was studied in vitro according to the classical scheme of neutralization (inactivation) of the virus.
Results. For comparison we used control samples of aqueous extracts of Chaga mushroom (Inonotus obliquus) and grass of Alchemilla vulgaris L. with EC50 equal to 21.36±3.92 and 39.67±8.75 µg/ml (for dry raw materials) versus 103 PFU/ml HSV‐2. As a result the prevailing activity (from 15.25±3.92 to 1.71±0.54 µg/ml) was identified for extracts of tea compositions based on black and green tea, as well as individual ingredients for their composition – black tea, leaves of Mentha piperita L., flowers of Lavandula angustifolia Mill. and clove spices (Syzygium aromaticum L.). Extracts obtained from plants that are not part of tea compositions of interest are fermented leaves of Epilobium angustifolium L. (Onagraceae) and grass of two species Euphorbia (E. pilosa L. and E. esula L., Euphorbiaceae) with inhibitory activity at concentrations of 10.675±1.96; 2.29±0.57 and 1.71±0.54 µg/ml, respectively.
Conclusion. The results presented can become the basis for the search for individual biologically active substances of plant origin that inhibit HSV‐2 replication as well as for the development of effective medicines in the form of tea beverages and/or formulations for topical use to reduce relapses of chronic herpes.
About the Authors
E. I. КаzachinskaiaRussian Federation
Elena I. Kazachinskaia - Doctor of Biology, Leading Researcher of the Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch of Russian Academy of Sciences.
r/p Koltsovo 32‐1, Novosibirsk, 630559.
Tel. +79095307441
Competing Interests:
The authors declare no conflict of interest.
A. A. Chepurnov
Russian Federation
Alexander А. Chepurnov.
Novosibirsk.
Competing Interests:
The authors declare no conflict of interest.
A. A. Shelemba
Russian Federation
Arseniya А. Shelemba.
Novosibirsk.
Competing Interests:
The authors declare no conflict of interest.
S. A. Guseinova
Russian Federation
Sakinat A. Guseinova.
Makhachkala.
Competing Interests:
The authors declare no conflict of interest.
M. G. Magomedov
Russian Federation
Magomed G. Magomedov.
Makhachkala.
Competing Interests:
The authors declare no conflict of interest.
Yu. V. Коnonova
Russian Federation
Yulia V. Коnonova.
Novosibirsk.
Competing Interests:
The authors declare no conflict of interest.
V. V. Romanyuk
Russian Federation
Vladimir V. Romanyuk.
Novosibirsk.
Competing Interests:
The authors declare no conflict of interest.
A. M. Shestopalov
Russian Federation
Аlexander М. Shestopalov.
Novosibirsk.
Competing Interests:
The authors declare no conflict of interest.
References
1. Aleem A., Akbar Samad A.B., Slenker A.K. Emerging Variants of SARS‐CoV‐2 And Novel Therapeutics Against Coronavirus (COVID‐19). 2022 May 12. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022.
2. Abdoli A., Falahi S., Kenarkoohi A. COVID‐19‐associated opportunistic infections: a snapshot on the current reports. Clin Exp Med., 2022, vol. 22, pp. 327‐346. DOI: 10.1007/s10238‐021‐00751‐7
3. Franceschini E., Cozzi‐Lepri A., Santoro A., Bacca E., Lancellotti G., Menozzi M., Gennari W., Meschiari M., Bedini A., Orlando G., PuzzolanteC., Digaetano M., Milic J., Codeluppi M., Pecorari M., Carli F., Cuomo G., Alfano Gaetano, Corradi L., Tonelli R., De Maria N., Busani S., Biagioni E., Coloretti I., Guaraldi G., Sarti M., Luppi M., Clini E., Girardis M., Gyssens I.C., Mussini C. Herpes Simplex Virus Re‐Activation in Patients with SARS‐CoV‐2 Pneumonia: A Prospective, Observational Study. Microorganisms, 2021, vol. 9, no. 9, pp. 1896. DOI: 10.3390/microorganisms9091896
4. Maia C.M.F., Marques N.P., de Lucena E.H.G., de Rezende L.F., Martelli D.R.B., Martelli‐Júnior H. Increased number of Herpes Zoster cases in Brazil related to the COVID‐19 pandemic. Int. J. Infect. Dis., 2021, no. 104, pp. 732‐733. DOI: 10.1016/j.ijid.2021.02.033
5. Dursun R., Temiz S.A. The clinics of HHV‐6 infection in COVID‐19 pandemic: Pityriasis rosea and Kawasaki disease. Dermatol. Ther., 2020, no. 33, e13730. DOI: 10.1111/dth.13730
6. Seeßle J., Hippchen T., Schnitzler P., Gsenger J., Giese T., Merle U. High rate of HSV‐1 reactivation in invasively ventilated COVID‐19 patients: Immunological findings. PLoS ONE, 2021, vol. 16, no. 7, e0254129. DOI: 10.1371/journal.pone.0254129
7. Lovati C., Osio M., Pantoni L. Diagnosing herpes simplex‐1 encephalitis at the time of COVID‐19 pandemic. Neurol Sci., 2020, vol. 41, no. 6, pp. 1361‐1364. DOI: 10.1007/s10072‐020‐04461‐y
8. Alharthy A., Faqihi F., Noor A., Memish Z.A., Karakitsos D. Co‐infection of human immunodeficiency virus, herpes simplex virus‐2 and SARS‐CoV‐2 with false‐negative real‐time polymerase chain reaction. Singapore Med J., 2022, vol. 63(6), pp. 345‐347. DOI: 10.11622/smedj.2020158
9. Al‐Dwairi R.A., Aleshawi A., Adi S., Abu‐Zreig L. Reactivation of Herpes Simplex Keratitis on a Corneal Graft Following SARS‐CoV‐2 mRNA Vaccination. Med Arch., 2022, vol. 76, no. 2, pp. 146‐148. DOI: 10.5455/medarh.2022.76.146‐148
10. TognarelliE.I., Palomino T.F., Corrales N., Bueno S.M., Kalergis A.M., González P.A. Herpes Simplex Virus Evasion of Early Host Antiviral Responses. Front Cell Infect Microbiol., 2019, vol. 9, pp. 127. DOI: 10.3389/fcimb.2019.00127
11. Koelle D.M., Norberg P., Fitzgibbon M.P., Russell R.M., Greninger A.L., Huang M.‐L., Stensland L., Jing L., Magaret A.S., Diem K., Selke S., Xie H., Celum C., Lingappa J.R., Jerome K.R., Wald A., Johnston C. Worldwide circulation of HSV‐2 × HSV‐1 recombinant strains. Sci Rep., 2017, no. 7, pp. 44084. DOI: 10.1038/srep44084
12. Forni D., Pontremoli C., Clerici M., Pozzoli U., Cagliani R., Sironi M. Recent out‐of‐Africa migration of human herpes simplex viruses. Mol. Biol. Evol., 2020, no. 37, pp. 1259‐1271. DOI: 10.1093/molbev/msaa001
13. James C., Harfouche M., Welton N.J., Turner K.M., Abu‐Raddad L.J., Gottlieb S.L., Looker K.J. Herpes simplex virus: Global infection prevalence and incidence estimates, 2016. Bull. World Health Organ., 2020, no. 98, pp. 315‐329. DOI: 10.2471/BLT.19.237149
14. Treml J., Gazdová M., Šmejkal K., Šudomová M., Kubatka P., Hassan Sherif T.S. Natural Products‐Derived Chemicals: Breaking Barriers to Novel Anti‐HSV Drug Development. Viruses, 2020, vol. 12, no. 2, pp. 154. DOI: 10.3390/v12020154
15. McQuillan G., Kruszon‐Moran D., Flagg E.W., Paulose‐Ram R. Prevalence of Herpes Simplex Virus Type 1 and Type 2 in Persons Aged 14‐49: United States, 2015‐2016. NCHS Data Brief., 2018, no. 304, pp. 1‐8.
16. Egan K.P., Wu S., Wigdahl B., Jennings S.R. Immunological control of herpes simplex virus infections. J. Neurovirol., 2013, no. 19, pp. 328‐345. DOI: 10.1007/s13365‐013‐0189‐3
17. Silhol R., Coupland H., Baggaley R.F., Miller L., Staadegaard L., Gottlieb S.L., Stannah J., Turner K.M.E., Vickerman P., Hayes R., Mayaud P., Looker K.J, Boily M.‐C. What is the burden of heterosexually‐acquired HIV due to HSV‐2? Global and regional model‐based estimates of the proportion and number of HIV infections attributable to HSV‐2 infection. J Acquir Immune Defic Syndr., 2021, vol. 88, iss. 1, pp. 19‐30. DOI: 10.1097/QAI.0000000000002743
18. Mrаzovа V., Golais F.B. A Possible Role of Human Herpes Viruses Belonging to the Subfamily Alphaherpesvirinae in the Development of Some Cancers. Klin Onkol. Spring., 2018, vol. 31, no. 3, pp. 178‐183. DOI: 10.14735/amko2018178
19. AschnerC.B., Herold B.C. Alphaherpesvirus Vaccines. Curr Issues Mol Biol., 2021, no. 41, pp. 469‐508. DOI: 10.21775/cimb.041.469
20. Whitley R., Baines J. Clinical management of herpes simplex virus infections: Past, present, and future. F1000 Res., 2018, no. 7. F1000 Faculty Rev‐1726. DOI: 10.12688/f1000research.16157.1
21. Garber A., Barnard L., Pickrell C. Review of Whole Plant Extracts With Activity Against Herpes Simplex Viruses In Vitro and In Vivo. J Evid Based Integr Med., 2021, no. 26, article number: 2515690X20978394. DOI: 10.1177/2515690X20978394
22. Ding L., Jiang P., Xu X., Lu W., Yang C., Li L., Zhou P., Liu S. T‐ type calcium channels blockers inhibit HSV‐2 infection at the late stage of genome replication. Eur J Pharmacol., 2021, no. 892, article number: 173782. DOI: 10.1016/j.ejphar.2020.173782
23. Mucsi I., Gyulai Z., Béládi I. Combined effects of flavonoids and acyclovir against herpesviruses in cell cultures. Acta Microbiol Hung., 1992, vol. 39, no. 2, pp. 137‐47.
24. Mhatre S., Srivastava T., Naik S., Patravale V. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID‐19: A review. Phytomedicine, 2020, vol. 85, article number: 153286. DOI: 10.1016/j.phymed.2020.153286
25. Musarra‐Pizzo M., Pennisi R., Ben‐Amor I., Smeriglio A., Mandalari G., Sciortino M.T. In Vitro Anti‐HSV‐1 Activity of Polyphenol‐Rich Extracts and Pure Polyphenol Compounds Derived from Pistachios Kernels (Pistacia vera L.). Plants (Basel), 2020, vol. 9, no. 2, pp. 267. DOI: 10.3390/plants9020267
26. Cascella M., Bimonte S., Muzio M.R., Schiavone V., Cuomo A. The efficacy of Epigallocatechin‐3‐gallate (green tea) in the treatment of Alzheimer's disease: an overview of pre‐clinical studies and translational perspectives in clinical practice. Infect Agent Cancer., 2017, no. 12, pp. 36. DOI: 10.1186/s13027‐017‐0145‐6
27. Zakaryan H., Arabyan E., Oo A., Zandi K. Flavonoids: promising natural compounds against viral infections. Arch Virol., 2017, vol. 162, no. 9, pp. 2539‐2551. DOI: 10.1007/s00705‐017‐3417‐y
28. Jo S., Kim S., Shin D.H., Kim M.‐S. Inhibition of SARS‐CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem., 2020, vol. 35, no. 1, pp. 145‐151. DOI: 10.1080/14756366.2019.1690480
29. Mhatre S., Srivastava T., Naik S., Patravale V. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID‐19: A review. Phytomedicine, 2021., no. 85, article number: 153286. DOI: 10.1016/j.phymed.2020.153286
30. Каzachinskaia Е.I., Chepurnov А.А., Коnonova Yu.V., Shelemba А.А., Romanyuk V.V., Magomedov M.G., Shestopalov А.М. Inhibitory activity of tea compositions and their constituent ingredients on SARS‐COV‐2 replication in vitro. South of Russia: ecology, development, 2022, vol. 17, no. 2, pp. 76‐90. (In Russian) DOI: 10.18470/1992‐1098‐2022‐2‐76‐90
31. Razumov I.A., Kosogova T.A., Kazachinskaia E.I., Puchkova L.I., Shcherbakova N.C., Gorbunova I.A., Mikhailovskaya I.N., Loktev V.B., Teplyakova T.V. Antiviral activity of aqueous extracts and polysaccharide fractions obtained from mycelium and fruiting bodies of higher fungi. Antibiotiki i khimioterapiya [Antibiotics and chemotherapy]. 2010, vol. 55, no. 9‐10, pp. 14‐18. (In Russian)
32. Mazurkova N.A., Kukushkina T.A., Vysochina G.I., Ibragimova G.B., Lobanova I.E., Filippova E.I., Mazurkova O.Ju., Makarevich E.V., Shishkina L.N., Agafonov A.P. The study of the antiherpetic activity of extracts of the common cuff (Alchemilla vulgaris L.). Razrabotka i registratsiya lekarstvennykh sredstv [Drug development & registration]. 2016, vol. 1, no. 14, pp. 118‐127. (In Russian)
33. Susloparov M.A., Glotov A.G., Glotova T.I. To study the effectiveness of the therapeutic and prophylactic effect of ultra‐ low doses of antibodies to gamma interferon on an experimental mouse model of herpes virus infection. Antibiotiki i khimioterapiya [Antibiotics and chemotherapy]. 2004, vol. 49, no. 10, pp. 3‐6. (In Russian)
34. Shapolova E.G., Lomovsky O.I., Kazachinskaia E.I., Loktev V.B., Teplyakova T.V. Antiviral Activity of Silicon Dioxide Composites with Polyphenols Obtained by Mechanochemical Method from Plant Raw Materials. Khimiko‐farmatsevticheskii zhurnal [Chemico‐pharmaceutical J.]. 2016, vol. 50, no. 9, pp. 25‐29. (In Russian)
35. Fisenko V.P. Rukovodstvo po eksperimental'nomu (doklinicheskomu) izucheniyu novykh farmakologicheskikh veshchestv [Guidelines for experimental (preclinical) study of new pharmacological substances]. Moscow, 2000, 398 p. (In Russian)
36. Hassan S.T.S., Berchova‐Bimova K., Šudomova M., Malanik M., Smejkal K., Rengasamy K.R.R. In Vitro Study of Multi‐Therapeutic Properties of Thymus bovei Benth. Essential Oil and Its Main Component for Promoting Their Use in Clinical Practice. J. Clin. Med., 2018, no. 7, pp. 283. DOI: 10.3390/jcm7090283
37. Cheng H.‐Y., Lin L.‐T., Huang H.‐H., Yang C.‐M., Lin C.‐C. Yin Chen Hao Tang, a Chinese prescription, inhibits both herpes simplex virus type‐1 and type‐2 infections in vitro. Antiviral Res., 2008, vol. 77, no. 1, pp. 14‐19. DOI: 10.1016/j.antiviral.2007.08.012
38. Churqui M.P., Lind L., Thörn K., Svensson A., Savolainen O., Aranda K.T., Kristina E. Extracts of Equisetum giganteum L. and Copaifera reticulate Ducke show strong antiviral activity against the sexually transmitted pathogen herpes simplex virus type 2. J Ethnopharmacol., 2018, no. 210, pp. 192‐197. DOI: 10.1016/j.jep.2017.08.010
39. Lu Y., Jia Y., Xue Z., Li N., Liu J., Chen H. Recent Developments in Inonotus obliquus (Chaga mushroom) Polysaccharides: Isolation, Structural Characteristics, Biological Activities and Application. Polymers (Basel), 2021, vol. 13, no. 9, pp. 1441. DOI: 10.3390/polym13091441
40. Luganini A., Sibille G., Mognetti B., Sainas S., Pippione A.C., Giorgis M., Boschi D., Lolli M.L., Gribaudo G. Effective deploying of a novel DHODH inhibitor against herpes simplex type 1 and type 2 replication. Antiviral Res., 2021, vol. 189, article number: 105057. DOI: 10.1016/j.antiviral.2021.105057
41. Hassan S.T.S, Švajdlenka E., Berchová‐Bímová K. Hibiscus sabdariffa L. and Its Bioactive Constituents Exhibit Antiviral Activity against HSV‐2 and Anti‐enzymatic Properties against Urease by an ESI‐MS Based Assay. Molecules, 2017, vol. 22, no. 5, pp. 722. DOI: 10.3390/molecules22050722
42. Krummenacher C., Baribaud F., de Leon M.P., Baribaud I., Whitbeck J.C., Xu R., Cohen G. H., Eisenberg R.J. Comparative usage of herpesvirus entry mediator A and nectin‐1 by laboratory strains and clinical isolates of herpes simplex virus. Virology, 2004, vol. 322, no. 2, pp. 286‐299. DOI: 10.1016/j.virol.2004.02.005
43. Arduino P.G., Porter S.R. Herpes Simplex Virus Type 1 infection: Overview on relevant clinico‐pathological features. J. Oral Pathol. Med., 2008, vol. 37, pp. 107‐121. DOI: 10.1111/j.1600‐0714.2007.00586.x
44. Jambunathan N., Clark C.M., Musarrat F., Chouljenko V.N., Rudd J., Kousoulas K.G. Two Sides to Every Story: Herpes Simplex Type‐1 Viral Glycoproteins gB, gD, gH/gL, gK, and Cellular Receptors Function as Key Players in Membrane Fusion. Viruses, 2021, vol. 13, no. 9, pp. 1849. DOI: 10.3390/v13091849
45. Smith G.A. Navigating the Cytoplasm: Delivery of the Alphaherpesvirus Genome to the Nucleus. Curr Issues Mol Biol., 2021, no. 41, pp. 171‐220. DOI: 10.21775/cimb.041.171
46. Connolly S.A., Jardetzky T.S., Longnecker R. The structural basis of herpesvirus entry. Nat Rev Microbiol., 2021, vol. 19, no. 2, pp. 110‐121. DOI: 10.1038/s41579‐020‐00448‐w
47. DemirS., Atayoglu A.T., Galeotti F., Garzarella E.U., Zaccaria V., Volpi N., Karagoz A., Sahin F. Antiviral activity of different extracts of standardized propolis preparations against HSV. Antivir Ther., 2020, vol. 25, no. 7, pp. 353‐363. DOI: 10.3851/IMP3383
48. Mohan S., Taha M.M.E., Makeen H.A., Alhazmi H.A., Bratty M.A., Sultana S., Ahsan W.,Najmi A., Khalid A. Bioactive Natural Antivirals: An Updated Review of the Available Plants and Isolated Molecules. Molecules, 2020, vol. 25, no. 21, pp. 4878. DOI: 10.3390/molecules25214878
49. Benzekri R., Bouslama L., Papetti A., Hammami M., Smaoui A., Limam F. Anti HSV‐2 activity of Peganum harmala (L.) and isolation of the active compound. Microb Pathog., 2018, no. 114, pp. 291‐298. DOI: 10.1016/j.micpath.2017.12.017
50. DonalisioM., Cagno V., Civra A., Gibellini D., Musumeci G., Rittà M., GhoshM., Lembo D. The traditional use of Vachellia nilotica for sexually transmitted diseases is substantiated by the antiviral activity of its bark extract against sexually transmitted viruses. J Ethnopharmacol, 2018, no. 213, pp. 403‐408. DOI: 10.1016/j.jep.2017.11.039
51. Ojha D., Das R., Sobia P., Dwivedi V., Ghosh S., Samanta A., Chattopadhyay D. Pedilanthus tithymaloides Inhibits HSV Infection by Modulating NF‐κB Signaling. PLoS One, 2015, vol. 10, no. 9, e0139338. DOI: 10.1371/journal.pone.0139338
52. Zannella C., Giugliano R., Chianese A., Buonocore C., Vitale G.A., Sanna G., Sarno F., Manzin A., Nebbioso A., Termolino P., Altucci L., Massimiliano G., de Pascale D., Franci G. Antiviral Activity of Vitis vinifera Leaf Extract against SARS‐CoV‐2 and HSV‐1. Viruses, 2021, vol. 13, no. 7, pp. 1263. DOI: 10.3390/v13071263
53. Тeplyakova T.V., Pyankov O.V., Skarnovich M.O., Bormotov N.I., Poteshkina A.L., Ovchinnikova A.S., Kosogova T.A., Magerramova A.V., Markovich N.A., Filippova E.I. An inhibitor of SARS‐CoV‐2 coronavirus replication based on an aqueous extract of the fungus Inonotus obliquus. Patent of the Russian Federation no. 2741714C1 published in Bulletin of Inventions no. 4 28.01.2021. (In Russian)
Review
For citations:
Каzachinskaia E.I., Chepurnov A.A., Shelemba A.A., Guseinova S.A., Magomedov M.G., Коnonova Yu.V., Romanyuk V.V., Shestopalov A.M. Inhibitory activity of aqueous extracts of tea compositions, individual ingredients for their preparation and some plants against replication of Herpes simplex virus type 2 in vitro. South of Russia: ecology, development. 2022;17(3):135-152. (In Russ.) https://doi.org/10.18470/1992-1098-2022-3-135-152