Preview

South of Russia: ecology, development

Advanced search

The role of ROH in the etiopathogenesis of complex diseases

https://doi.org/10.18470/1992-1098-2022-2-130-139

Abstract

Aim. To carry out a comparative analysis of the main directions of genetic studies of complex (chronic) human neuropsychiatric diseases and to determine the prospects for their genomic studies.

Discussion. Complex diseases account for more than 90% of the total human pathology and are the main cause of premature death and disability. One of the most urgent and severe categories of complex diseases, both for the patients themselves and for society, are endogenous mental illnesses, in particular, schizophrenia, mental retardation and autism spectrum disorders. Despite the fact that genetic and epidemiological studies show high heritability rates (up to 70‐80%), the identification of predisposition genes remains a challenge. Studies in recent decades have contributed to understanding the genetic mechanisms of the pathogenesis of such diseases and have significantly advanced our understanding in terms of identifying risk loci, possible mechanisms for the transmission of genetic risk, and the involvement in the pathogenesis of such diseases of not one but of a large number of genes that provide many variants of gene expression. However, the mapping of genes that control such clinical phenotypes and mutations in them that cause pathogenesis remains largely unknown.

Conclusion. The finding of the same gene changes in neuropsychiatric complex diseases suggests that the genes involved converge in biochemical pathways and may be caused by a complex interplay of genetic and environmental factors characterized by genetic heterogeneity, which is often associated with clinical heterogeneity, incomplete penetrance and phenocopies. This is of great importance for the development of gene therapy through the identification of drug targets for the treatment of these disorders.  

About the Authors

D. K. Omarova
Precaspian Institute of Biological Resources, Dagestan Federal Research Centre, Russian Academy of Sciences; Vavilov Institute of General Genetics, Russian Academy of Science
Russian Federation

Dzhamilya K. Omarova

Makhachkala

Moscow


Competing Interests:

The authors declare no conflict of interest



A. A. Adieva
Precaspian Institute of Biological Resources, Dagestan Federal Research Centre, Russian Academy of Sciences; Dagestan State University of National Economy
Russian Federation

Aina A. Adieva, Doctor of Biological Sciences, Professor & Leading Researcher, Animal Ecology Laboratory

45 Gadzhiev St, Makhachkala, 367000

Теl. +79883005534


Competing Interests:

The authors declare no conflict of interest



K. B. Bulaeva
ENIGMA International Scientific Corporation
United States

Kazima B. Bulaeva

Los Angeles


Competing Interests:

The authors declare no conflict of interest



N. O. Guseynova
Dagestan State University
Russian Federation

Nadira O. Guseynova

Makhachkala


Competing Interests:

The authors declare no conflict of interest



I. V. Amirkhanova
Precaspian Institute of Biological Resources, Dagestan Federal Research Centre, Russian Academy of Sciences
Russian Federation

Irina V. Amirkhanova

Makhachkala


Competing Interests:

The authors declare no conflict of interest



S. A. Dzhamalova
Dagestan State University of National Economy
Russian Federation

Svetlana A. Dzhamalova

Makhachkala


Competing Interests:

The authors declare no conflict of interest



References

1. Aulchenko Y. S., Ripatti S., Lindqvist I., Boomsma D., Heid I. M. et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat. Genet., 2009, vol. 41, no. 1, pp. 47-55. DOI: 10.1038/ng.269

2. Vasan R.S., Glaser N.L., Felix J.F., Lieb W., Wild P.S. et al. Genetic variants associated with cardiac structure and function: a meta-analysis and replication of genome-wide association data. JAMA, 2009, vol. 302, no. 2, pp. 168-178. DOI: 10.1001/jama.2009.978-a

3. Dietz H.C. New therapeutic approaches to Mendelian disorders. N. Engl. J. Med., 2010, vol. 363, no. 9, pp. 852-863. DOI: 10.1056/NEJMra0907180

4. Puzyrev V.P. Genetic view on the phenomenon of combined pathology in humans. Meditsinskaya genetika [Medical genetics]. 2008, vol. 8, no. 9, pp. 3-9. (In Russian)

5. Baranov V.S. Geneticheskii pasport — osnova individual'noi i prediktivnoi meditsiny [The genetic passport is the basis of individual and predictive medicine]. St. Petersburg, N-L Publ., 2009, 528 p. (In Russian)

6. Baranov V.S. The evolution of predictive medicine. Old ideas, new concepts. Meditsinskaya genetika [Medical genetics]. 2017, vol. 16, no. 5, pp. 4-9. (In Russian)

7. Riggs E.R., Andersen E.F., Cherry A.M., Kantarci S., Kearney H., Patel A. et.al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med., 2020, vol. 22, no. 2, pp. 245-257. DOI: 10.1038/s41436-019-0686-8

8. Harrison P.J. Recent genetic findings in schizophrenia and their therapeutic relevance. Journal of Psychopharmacology, 2015, vol. 29, no. 2, pp. 85-96. DOI: 10.1177/0269881114553647

9. Kendler K.S. A joint history of the genetic variation & the nature of schizophrenia. Molecular Psychiatry, 2015, no. 20, pp. 77-83. DOI: 10.1038/mp.2014.94

10. Bodrova T.A., Kostyushev D.S., Antonova E.N. et al. Introduction to predictive preventive medicine: experience of the past and the realities of tomorrow. Vestnik RAN [Bulletin of the Russian Academy of Sciences]. 2013, no. 1, pp. 58-64. (In Russian)

11. Weiss K.M., Terwilliger J.D. How many diseases does it take to map a gene with SNPs? Nature genetics, 2000, vol. 26, no. 2, pp. 151-157. DOI: 10.1038/79866

12. Zubkov E.A., Zorkina Ya.A., Reznik A.M., Kostyuk G.P., Chekhonin V.P. Genetic aspects of schizophrenia. Zhurnal nevrologii i psikhiatrii [Journal of Neurology and Psychiatry]. 2017, no. 6, pp. 126-132. (In Russian)

13. Gorbunova V.N. Genetics and epigenetics of syntropic diseases. Ecological Genetics, 2010, vol. 8, no. 4, pp. 39-43. (In Russian) DOI: 10.17816/ecogen8439-43

14. Zeller T., Blankenberg S., Diemert P. Genomewide association studies in cardiovascular disease – an update 2011. Clin. chemistry, 2012, vol. 58, no. 1, pp. 92-103. DOI: 10.1373/clinchem.2011.170431

15. Fahed A.C., Wang M., Homburger J.R., Patel A.P., Bick A.G., Neben C.L. et.al. Polygenic background modifies penetrance of monogenic variants for tier 1 genomic conditions. Nat. Commun., 2020, vol. 11, article number: 3635. DOI: 10.1038/s41467-020-17374-3

16. Glotov A.S., Vashukova E.S., Danilova M.M., Pakin V.S., Masharsky A.E., Fedotov P.V., Zainulina M.S., Arzhanova O.N., Mozgovaya E.V., Baranov. B.C. New generation sequencing (NGS) to study the ACVR2A gene in pregnant women with preeclampsia. Molekulyarnaya meditsina [Molecular Medicine]. 2014, vol. 5. pp. 33-40. (In Russian)

17. Svishcheva G.R., Belonogova N.M, Zorkoltseva I.V., Kirichenko A.V., Axenovich T.I. Gene-based association tests using GWAS summary statistics. Bioinformatics, 2019, vol. 35, no. 19, pp. 3701- 3708. DOI: 10.1093/bioinformatics/btz172

18. Zuk O., Hechter E., Sinyaev S.R., Lander E.S. The mistery of missing heritability: Genetic interaction create phantom heritability. PNAS, 2012, vol. 109, no. 4, pp. 1193-1198. DOI: 10.1073/pnas.1119675109

19. Gratten J., Wray N.R., Keller M.C. et al. Large-scale genomics unveils the genetic architecture of psychiatric disorders. Nat. Neurosci., 2014, vol. 17, no. 6, pp. 782-790. DOI: 10.1038/nn.3708

20. Rotroff D.M. A Bioinformatics Crash Course for Interpreting Genomics Data. Chest., 2020, vol. 158, iss. 1, pp. 113-123. DOI: 10.1016/j.chest.2020.03.004

21. Bulayeva K.B., Jorde L., Watkins S., Ostler C., Pavlova T.A., Bulayev O.A. et.al. Ethnogenomic diversity of Caucasus, Daghestan. Am. J. Hum. Biol., 2006, vol. 18, no. 5, pp. 610-620. DOI: 10.1002/ajhb.20531

22. Bulayeva K., Lesch K.P., Bulayev O., Walsh C., Glatt S., Gurgenova F., Omarova J. et.al. Genomic structural variants are linked with intellectual disability. J. Neural. Transm., 2015, vol. 122, no. 9, pp. 1289-1301. DOI: 10.1007/s00702-015-1366-8

23. Singh M.D., Jensen M., Lasser M., Huber E., Yusuff T. et.al. NCBP2 modulates neurodevelopmental defects of the 3q29 deletion in Drosophila and Xenopus laevis models. PLoS Genet., 2020, vol. 16, no. 2, article number: e1008590. DOI: 10.1371/journal.pgen.1008590

24. Omarova D.K., Gurgenova F.R., Maksimova T.N., Bulaeva K.B., Bulaev O.A. Structural variations of the genome in mentally retarded patients. Vestnik Dagestanskogo nauchnogo tsentra [Bulletin of the Dagestan Scientific Center]. 2015, no. 58, pp. 38- 48. (In Russian)

25. Pagani L., Ayub Q., MacArthur D.G., Xue Y. et.al. High altitude adaptation in Daghestani populations from the Caucasus. Hum. Genet., 2012, vol. 131, no. 3, pp. 423-433. DOI: 10.1007/s00439-011-1084-8

26. Wang T., Hoekzema K., Vecchio D., Wu H., Sulovari A. et.al. Large-scale targeted sequencing identifies risk genes for neurodevelopmental disorders. Nat. Commun., 2020, vol. 11, no. 1, article number: 4932. DOI: 10.1038/s41467-020-18723-y

27. Satizabal C.L., Adams H.H., Hibar D.P., White C.C. et.al. Genetic architecture of subcortical brain structures in 38,851 individuals. Nat. Genet., 2019, vol. 51, no. 11, pp. 1624-1636. DOI: 10.1038/s41588-019-0511-y

28. Thompson C.C., Chimetto L., Edwards R.A., Swings J., Stackebrandt E., Thompson F.L. Microbial genomic taxonomy. BMC Genomics, 2013, vol. 14, no. 913, pp.1-8. DOI: 10.1186/1471-2164-14-913

29. Thompson P.M., Andreassen O.A., Arias-Vasquez A., Bearden C.E. et.al. ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide. Neuroimage, 2017, vol. 145, part B, pp. 389-408. DOI: 10.1016/j.neuroimage.2015.11.057

30. Andreassen O.A., Thompson W.K., Schork A.J. et al. Improved detection of common variants associated with schizophrenia and bipolar disorder using pleiotropy-informed conditional false discovery rates. PLoS Genet., 2013, vol. 9, no. 4, article number: e1003455. DOI: 10.1371/journal.pgen.1003455

31. Barkus C., Sanderson D.J., Walton M.E. et al. What causes aberrant salience in schizophrenia? A role for impaired short-term habituation and the GluA1 AMPA receptor. Mol. Psychiatry, 2014, vol. 19, no. 10, pp. 1060-1070. DOI: 10.1038/mp.2014.91

32. Williams H.J., Norton N., Dwyer S. et.al. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Mol. Psychiatry, 2011, vol. 16, no. 4, pp. 429-441. DOI: 10.1038/mp.2010.36

33. Schneider M., Debbane M., Bassett A.S. et al. Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: Results from the International Consortium on Brain and Behavior in 22q11.2 Deletion Syndrome. Am. J. Psychiatry, 2014, vol. 171, no. 6, pp. 627-639. DOI: 10.1176/appi.ajp.2013.13070864

34. Stankiewicz P., Lupski J.R. Molecular-evolutionary mechanisms for genomic disorders. Curr. Opin. Genet. Dev., 2002, vol. 12, no. 3, pp. 312-319. DOI: 10.1016/s0959-437x(02)00304-0

35. Stankiewicz P., Lupski J.R. Genome architecture, rearrangements and genomic disorders. Trends Genet., 2002, vol. 18, no. 2, pp. 74-82. DOI: 10.1016/s0168-9525(02)02592-1

36. Busby G.B., Hellenthal G., Montinaro F., Tofanelli S., Bulayeva K., Rudan I. et.al. The Role of Recent Admixture in Forming the Contemporary West Eurasian Genomic Landscape. Curr. Biol., 2015, vol. 25, no. 19, pp. 2518-2526. DOI: 10.1016/j.cub.2015.08.007

37. Joseph C.G., Darrah E., Shah A.A., Skora A.D. et.al. Association of the autoimmune disease scleroderma with an immunologic response to cancer. Science, 2014, vol. 343, no. 6167, pp. 152-157. DOI: 10.1126/science.1246886

38. Purfield D.C., Berry D., McParland S., Bradley D.G. Runs of homozygosity and population history in cattle. BMC Genet., 2012, vol. 13, article number: 70. DOI: 10.1186/1471-2156-13-70

39. Peripolli E., Munari D.P., Silva M.V., Lima AL.F., Irgang R., Baldi F. Runs of homozygosity: current knowledge and applications in livestock. Anim. Genet., 2017, vol. 48, no. 3, pp. 255-271. DOI: 10.1111/age.12526

40. Makhiyanova E., Dreval' I. Polnyi meditsinskii spravochnik: avtoritetnoe meditsinskoe rukovodstvo dlya sovremennoi sem'i [Complete medical reference book: authoritative medical guide for the modern family]. Moscow, AST, Astrel Publ., 2006, 1104 p. (In Russian)

41. Kendler K.S. A history of the DSM-5 scientific review committee. Molecular Psychiatry, 2015, vol. 43, no. 9, pp. 1793- 1800. DOI: 10.1017/S0033291713001578

42. Karafet T.M., Bulayeva K.B., Bulayev O.A., Gurgenova F., Omarova J. et.al. Extensive genome-wide autozygosity in the population isolates of Daghestan. Eur. J. Hum. Genet., 2015, vol. 23, no. 10, pp. 1405-12. DOI: 10.1038/ejhg.2014.299

43. Karafet T.M., Bulayeva K.B., Nichols J., Bulayev O.A., Omarova J. et.al. Coevolution of genes and languages and high levels of population structure among the highland populations of Daghestan. J. Hum. Genet., 2016, vol. 61, no. 3, pp. 181-191. DOI: 10.1038/jhg.2015.132

44. Lee S.H., DeCandida T.R., Ripke S. et al. Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes. Cell, 2018, vol. 173, no. 7, pp. 1705-1715.e16. DOI: 10.1016/j.cell.2018.05.046

45. Lee S.H., Hur M.H., Lee E.A., Hong K.C., Kim J.M. Genomic characterization of the porcine CRTC3 and the effects of a non- synonymous mutation p.V515F on lean meat production and belly fat. Meat. Sci., 2018, vol. 137, pp. 211-215. DOI: 10.1016/j.meatsci.2017.11.019

46. Lencz T., Lambert C., DeRosse P., Burdick K.E., Morgan T.V. et.al. Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia. Proc. Nat. Acad. Sci. U S A, 2007, vol. 104, no. 50, pp. 19942-19947. DOI: 10.1073/pnas.0710021104

47. Need A.C., Goldstein D.B. Schizophrenia genetics comes of age. Neuron, 2014, vol. 83(4), pp. 760-763. DOI: 10.1016/j.neuron.2014.08.015

48. Yusuff T., Jensen M., Yennawar S., Pizzo L., Karthikeyan S. et.al. Drosophila models of pathogenic copy-number variant genes show global and non-neuronal defects during development. PLoS Genet., 2020, vol. 16, no. 6, article number: e1008792. DOI: 10.1371/journal.pgen.1008792

49. Witt S.H., Streit F., Jungkunz M., Frank J., Awasthi S., Reinbold C.S. et.al. Genome-wide association study of borderline personality disorder reveals genetic overlap with bipolar disorder, major depression and schizophrenia. Transl. Psychiatry, 2017, vol. 7, no. 6, article number: e1155. DOI: 10.1038/tp.2017.115

50. Ramos J., Proven M., Halvardson J., Hagelskamp F., Kuchinskaya E. et.al. Identification and rescue of a tRNA wobble inosine deficiency causing intellectual disability disorder. RNA, 2020, vol. 26, no. 11, pp. 1654-1666. DOI: 10.1261/rna.076380.120

51. Coleman J.R.I., Gaspar H.A., Bryois J. Bipolar Disorder Working Group of the Psychiatric Genomics Consortium; Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium, Breen G. The Genetics of the Mood Disorder Spectrum: Genome-wide Association Analyses of More Than 185,000 Cases and 439,000 Controls. Biol Psychiatry, 2020, vol. 88, no. 2, pp. 169-184. DOI: 10.1016/j.biopsych.2019.10.015

52. Green E.K., Rees E., Walters J.T., Smith K.G., Forty L., Grozeva D. et.al. Copy number variation in bipolar disorder. Mol. Psychiatry, 2016, vol. 21, no. 1, pp. 89-93. DOI: 10.1038/mp.2014.174

53. Etemadikhah M., Niazi A., Wetterberg L., Feuk L. Transcriptome analysis of fibroblasts from schizophrenia patients reveals differential expression of schizophrenia-related genes. Sci. Rep., 2020, vol. 10, no. 1, article number: 630. DOI: 10.1038/s41598-020-57467-z

54. Iyer J., Girirajan S. Gene discovery and functional assessment of rare copy-number variants in neurodevelopmental disorders. Brief Funct. Genomics, 2015, vol. 14, no. 5, pp. 315-328. DOI: 10.1093/bfgp/elv018

55. Iyer J., Singh M.D., Jensen M., Patel P., Pizzo L. et.al. Pervasive genetic interactions modulate neurodevelopmental defects of the autism-associated 16p11.2 deletion in Drosophila melanogaster. Nat. Commun., 2018, vol. 9, no. 1, article number: 2548. DOI: 10.1038/s41467-018-04882-6

56. Szatkiewicz J.P. Biological insights from 108 schizophrenia- associated genetic loci. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Nature, 2014, vol. 511, no. 7510, pp. 421-427. DOI: 10.1038/nature13595

57. Thuresson A.C., Soussi Zander C., Zhao J.J., Halvardson J. et.al. Whole genome sequencing of consanguineous families reveals novel pathogenic variants in intellectual disability. Clin. Genet., 2019, vol. 95, no. 3, pp. 436-439. DOI: 10.1111/cge.13470

58. Watson H.J., Yilmaz Z., Thornton L.M., Hübel C., Coleman J.R.I., Gaspar H.A. et.al. Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. Nat. Genet., 2019, vol. 51, no. 8, pp. 1207-1214. DOI: 10.1038/s41588-019-0439-2

59. Hassfurther A., Komini E., Fischer J., Leipoldt M. Clinical and Genetic Heterogeneity of the 15q13.3 Microdeletion Syndrome. Mol. Syndromol., 2016, vol. 6, no. 5, pp. 222-228. DOI: 10.1159/000443343

60. Aulchenko Yu.S., Aksenovich T.I. Methodological approaches and strategies for mapping genes that control complex human traits. Vestnik VOGiS, 2006, no. 10, pp. 189-202. (In Russian) DOI: 10.17816/ecogen933-14

61.


Review

For citations:


Omarova D.K., Adieva A.A., Bulaeva K.B., Guseynova N.O., Amirkhanova I.V., Dzhamalova S.A. The role of ROH in the etiopathogenesis of complex diseases. South of Russia: ecology, development. 2022;17(2):130-139. (In Russ.) https://doi.org/10.18470/1992-1098-2022-2-130-139

Views: 327


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1992-1098 (Print)
ISSN 2413-0958 (Online)