Promising bacteria strains of the genus Bacillus in plant protection against fusariosis and mycotoxin contamination
https://doi.org/10.18470/1992-1098-2022-2-91-101
Abstract
Aim – to study the biocontrol properties of B. velezensis BZR 336g and B. velezensis BZR 517 strains against Fusarium pathogens using the fungus Fusarium graminearum as an example and to reduce the accumulation of deoxynivalenol (DON) and zearalenone (ZEN) in vitro.
Materials and Methods. A study of the toxinogenicity of F. graminearum fungal strains was undertaken on rice and wheat grains and the effect of B. velezensis BZR 336g and B. velezensis BZR 517 strains on the growth of the fungus was studied on wheat grains and by the double cultures method. An experiment to study the effect of a liquid culture and supernatant of bacteria was carried out on wheat grains and the content of DON and ZEN in wheat grains was analyzed by HPLC and enzyme immunoassay.
Results. It was found that two strains of the fungus F. graminearum were able to produce a high level of mycotoxins, while the strain F. graminearum 60318 had a higher growth rate. The B. velezensis BZR 336g and B. velezensis BZR 517 strains produced lipopeptide exometabolites and inhibited the growth of the F. graminearum 60318 strain. in vitro, while the content of ZEN remained at the control level.
Conclusion. The ability of two strains of bacteria B. velezensis BZR 336g and B. velezensis BZR 517 to suppress the growth of the fungus F. graminearum 60318, as well as to inhibit the accumulation of mycotoxins in wheat grain in vitro, suggests that an increase in the content of antagonist bacteria B. velezensis BZR 336g and B. velezensis BZR 517 in the wheat microbiota can contribute to the suppression of the growth and harm of the fungus F. graminearum 60318.
Keywords
About the Authors
V. V. AllakhverdyanRussian Federation
Valeriya V. Allakhverdyan, post‐graduate student, Junior Researcher
p/o 39 Krasnodar, Krasnodar Territory, 350039
Tel. +79648950107
Competing Interests:
The authors declare no conflict of interest
T. M. Sidorova
Russian Federation
Tatyana M. Sidorova
Krasnodar
Competing Interests:
The authors declare no conflict of interest
A. M. Asaturova
Russian Federation
Anzhela M. Asaturova
Krasnodar
Competing Interests:
The authors declare no conflict of interest
References
1. Janik E., Niemcewicz M., Ceremuga M., Stela M., Saluk-Bijak J.,Siadkowski A., Bijak M. Molecular aspects of micotoxins – a serious problem for human health. Int. j. mol. sci., 2020, vol. 21, iss. 2, article number: 8187. DOI: 10.3390/ijms21218187
2. Sato I., Ito M., Ishizaka M., Ikunaga Y., Sato Y., Yoshida S., Koitabashi M., Tsushima S. Thirteen novel deoxynivalenol- degrading bacteria are classified within two genera with distinct degradation mechanisms. FEMS Microbiology Letters, 2012, vol. 327(2), pp. 110-117. DOI: 10.1111/j.1574-6968.2011.02461.x
3. Bakker M.G., Brown D.W., Kelly A.C., Kim H.S., Kurtzman C.P., Mccormick S.P., O’Donnell K.L., Proctor R.H., Vaughan M.M., Ward T.J. Fusarium mycotoxins: A trans-disciplinary overview. Can. J. Plant Path., 2018, vol. 40(2), pp. 161-171. DOI: 10.1080/07060661.2018.1433720
4. Chtioui W., Balmas V., Delogu G., Migheli Q., Oufensou S. Bioprospecting phenols as inhibitors of trichothecene-producing Fusarium: sustainable approaches to the management of wheat pathogens. Toxins, 2022, vol. 14(2), article number: 72. DOI: 10.3390/toxins14020072
5. Zhu Y., Hassan Y.I., Lepp D., Shao S., Zhou T. Strategies and methodologies for developing microbial detoxification systems to mitigate mycotoxins. Toxins (Basel), 2017, vol. 9(4), article number: 130. https://doi.org/10.3390/toxins9040130
6. Chen Y., Wang J., Yang N., Wen Z., Sun X., Chai Y., Ma Z. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nature communications, 2018, vol. 9(1), article number: 3429. DOI: 10.1038/s41467-018- 05683-7
7. Zhou T., Gong J., Yu H., Li X.Z. Bacterial isolate and methods of detoxification of trichothecene mycotoxins. US Patent no. 20100239537, 2010.
8. Shen W., Liu Y., Zhan X., Zhan X., Rong X., Zhao L., Ji C., Lei Y., Li F., Chen J., Ma Q. Comparison of ameliorative effects between probiotic and biodegradable Bacillus subtilis on zearalenone toxicosis in gilts. Toxins, 2021, vol. 13(12), article number: 882. DOI: 10.3390/toxins13120882
9. Jia R., Cao L., Liu W., Shen Z. Detoxification of deoxynivalenol by Bacillus subtilis ASAG 216 and characterization the degradation process. Eur Food Res Technol, 2021, vol. 247, pp. 67-76. DOI: 10.1007/s00217-020-03607-8
10. Lee T., Park D., Kim K., Lim S.M., Yu N.H., Kim S., Kim H.Y., Jang J.Y., Park J.C., Ham H., Lee S., Hong S.K., Kim J.C. Characterization of Bacillus amyloliquefaciens DA12 showing potent antifungal activity against mycotoxigenic Fusarium species. Plant pathology, 2017, vol. 33(5), pp. 499-507. DOI: 10.5423/ppj.ft.06.2017.0126
11. Zalila-Kolsi I., Ben A., Hacina M., Sameh A., Sellami S., Nasfi Z.,Tounsi S.,Jamoussi K. Antagonist effects of Bacillus spp. strains against Fusarium graminearum for protection of durum wheat (Triticum turgidum L. subsp. durum). Microbiological research, 2016, vol. 192, pp. 148-158. DOI: 10.1016/j.micres.2016.06.012
12. Ji C., Fan Y., Zhao L. Review on biological degradation of mycotoxins. Animal nutrition, 2016, vol. 2(3), pp. 127-133. DOI: 10.1016/j.aninu.2016.07.003
13. Sidorova T.M., Asaturova A.M., Homyak A.I., Shternshis M.V., Tomashevich N.S. Optimization of laboratory cultivation conditions for the synthesis of antifungal metabolites by Bacillus subtilis strains. Saudi journal of biological sciences, 2020, vol. 27, iss. 7, pp. 1879-1885. DOI: 10.1016/j.sjbs.2020.05.002
14. Sidorova T.M., Asaturova A.M., Allahverdyan V.V. Peculiarities of antagonism of bacteria of the genus Bacillus against toxinogenic fungi Fusarium in protecting plants from disease and contamination with mycotoxins (review). South of Russia: ecology, development, 2021, vol. 16, no. 4, pp. 86-103. (In Russian) DOI: 10.18470/1992-1098-2021-4-86-103
15. Cawoy H., Debois D., Franzil L., De Pauw E., Thonart P., Ongena M. Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microbial biotechnology, 2015, vol. 8(2), pp. 281-295. DOI: 10.1111/1751-7915.12238
16. Zhu Y., Hassan Y.I., Lepp D., Shao S., Zhou T. Strategies and methodologies for developing microbial detoxification systems to mitigate mycotoxins. Toxins (Basel), 2017, vol. 9(4), article number: 130. DOI: 10.3390/toxins9040130
17. Sidorova T.M., Asaturova A.M., Khomyak A.I., Tomashevich N.S. Isolation and characterization of antifungal metabolites of Bacillus subtilis BZR 336g and Bacillus subtilis BZR 517 strains by a modified bioautography method. Agricultural Biology, 2019, vol. 54, no. 1, pp. 178-185. (In Russian) DOI: 10.15389/agrobiology.2019.1.178rus
18. Netrusov F.I. Praktikum po mikrobiologii [Praktikum po mikrobiologii]. Moscow, Akademiya Publ., 2005, 608 p. (In Russian)
19. Shi K., Yang P., Li J., Wu H., Li K., Guan S. Biocontrol of Fusarium graminearum growth and deoxynivalenol production in wheat grains using bacterial antagonists. International journal of environmental research and public health, 2014, vol. 11(1), pp. 1094-1105. DOI: 10.3390/ijerph110101094
20. Kononenko G.P., Burkin A.A. Fusariotoxins in grain feed. Veterinarnaya patologiya [Veterinary pathology]. 2002, no. 2, pp. 129-132. (In Russian)
21. Kononenko G.P., Piryazeva Ye.A., Burkin A.A. Substrate effect on mycotoxin biosynthesis Fusarium graminearum Schw. Uspekhi meditsinskoy mikologii [Advances in medical mycology]. 2017, no. 17(6), pp. 433-437 (In Russian)
22. Palazzini J., Roncallo P., Cantoro R., Chiotta M., Yerkovich N., Palacios S., Echenique V., Torres A., Ramirez M., Kariovsky P., Chulze S. Biocontrol of Fusarium graminearum sensu stricto, reduction of deoxynivalenol accumulation and phytohormone induction by two selected antagonists. Toxins, 2018, vol. 10(2), article number: 88. DOI: 10.3390/toxins10020088
23. Taheur F.B., Kouidhi B., Qurashi Y.M., Salah-Abbès J.B., Chaieb K. Review: Biotechnology of mycotoxins detoxification using microorganisms and enzymes. Toxicon, 2019, vol. 160, pp. 12-22. DOI: 10.1016/j.toxicon.2019.02.001
24. Sidorova T.M., Asaturova A.M., Khomyak A.I. Biologically active metabolites of Bacillus subtilis and their role in the control of phytopathogenic microorganisms (review). Agricultural Biology, 2018, no. 53(1), pp. 29-37. DOI: 10.15389/agrobiology.2018.1.29rus
25. Cao Y., Pi H., Chandrangsu P., Li Y., Wang Y., Zhou H., Xiong H., Helmann J.D., Cai Y. Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Scientific reports, 2018, vol. 8(1), article number: 4360. DOI: 10.1038/s41598-018-22782-z
26. Hanif A., Zhang F., Li P., Li C., Xu Y., Zubair M., Zhang M., Jia D., Zhao X., Liang J., Majid T., Yan J., Farzand A., Wu H., Gu Q., Gao X. Fengycin produced by Bacillus amyloliquefaciens FZB42 inhibits Fusarium graminearum growth and mycotoxins biosynthesis. Toxins, 2019, vol. 11(5), article number: 295. DOI: 10.3390/toxins11050295
27. Yu C., Liu X., Zhang X., Zhang M., Gu Y., Ali Q., Mohamed M.S.R., Xu J., Shi J., Gao X., Wu H., Gu Q. Mycosubtilin produced by Bacillus subtilis ATCC6633 inhibits growth and mycotoxin biosynthesis of Fusarium graminearum and Fusarium verticillioides. Toxins, 2021, vol. 13(11), article number: 791. DOI: 10.3390/toxins13110791
28. Khan N., Maymon M., Hirsch A.M. Combating Fusarium infection using Bacillus-based antimicrobials. Microorganisms, 2017, vol. 5(4), article number: 75. DOI: 10.3390/microorganisms5040075
29. Lee T.,Dami Park D., Kim K., Lim S.M., Yu N.H., Kim S., Kim H.-Y., Kyu Seok Jung1, Jang J.Y., Park J.-C., Ham H., Lee S., Hong S.K., J.-C. Characterization of Bacillus amyloliquefaciens DA12 showing potent antifungal activity against mycotoxigenic Fusarium species. Plant pathology, 2017, vol. 33(5), pp. 499-507. DOI: 10.5423/PPJ.FT.06.2017.0126
30. Vanhoutte I., De Mets L., De Boevre M., Uka V., Di Mavungu J.D., De Saeger S., De Gelder L., Audenaert K. Microbial detoxification of deoxynivalenol (DON), assessed via a Lemna minor L. bioassay, through biotransformation to 3-epi-DON and 3- epi-DOM-1. Toxins, 2017, vol. 9(2), article number: 63. DOI: 10.3390/toxins9020063
Review
For citations:
Allakhverdyan V.V., Sidorova T.M., Asaturova A.M. Promising bacteria strains of the genus Bacillus in plant protection against fusariosis and mycotoxin contamination. South of Russia: ecology, development. 2022;17(2):91-101. (In Russ.) https://doi.org/10.18470/1992-1098-2022-2-91-101