Preview

South of Russia: ecology, development

Advanced search

SARS‐CoV‐2: the prospects of the virus spreading and the course of the pathogenesis of coronavirus infection in various species of animals

https://doi.org/10.18470/1992-1098-2022-1-6-16

Abstract

Aim. Analyse available literature data about the possibility of coronavirus infection with and the severity of the course of infection in various animal species in order to evaluate the significance of this possibility in the context of preservation of the well‐being of both wild and domestic animals.

Discussion. SARS‐CoV‐2 is thought to have originated from bat CoV. The virus enters the cell by binding to the ACE2 receptor, the affinity for which differs depending on the animal species. Infected animals show viral RNA and may show clinical symptoms. It is known that the virus originated from some animals, while others may be carriers. Moreover, it can be that wild as well as domestic and farm animals are in close contact with humans. Therefore, it is advisable to conduct a study of the degree of threat to humans associated with the persistence of the virus in animal communities.

Conclusion. There is ample literature on the possibility of infection in various animals. However, it is not enough to fully understand how significant is the role that animals can play in the spread of coronavirus infection among humans and how much harm it can bring to themselves.

About the Authors

M. S. Fedotova
Novosibirsk State University; Federal Research Center for Fundamental and Translational Medicine
Russian Federation

Marina S. Fedotova

Novosibirsk



A. Yu. Filippova
Novosibirsk State University; Federal Research Center for Fundamental and Translational Medicine
Russian Federation

Anastasia Yu. Filippova

Novosibirsk



M. A. Omarov
Main Bureau of Medical and Social Expertise in Moscow
Russian Federation

Magomedsaid A. Omarov

Moscow



K. S. Yurchenko
Federal Research Center for Fundamental and Translational Medicine
Russian Federation

Ksenia S. Yurchenko

Novosibirsk



M. A. Gulyaeva
Novosibirsk State University; Federal Research Center for Fundamental and Translational Medicine
Russian Federation

Marina A. Gulyaeva, PhD in Biology, Associate Professor, Research Scientist

2 Pirogova St, Novosibirsk, 630090
2 Timakova St, Novosibirsk, 630117
Tel. +79529136513



References

1. Andreeva A.V., Nikolaeva O.N. New coronavirus infection (COVID‐19) in animals. Veterinary doctor, 2021, vol. 2, pp. 4‐11. (In Russian) DOI: 10.33632/1998‐698Х.2021‐2‐4‐11

2. Mahdy M.A.A., Younis W., Ewaida Z. An Overview of SARS‐CoV‐2 and Animal Infection // Frontiers in Veterinary Science. 2020. V. 7. Article ID 596391. DOI: 10.3389/fvets.2020.596391

3. Leroy E.M., Ar Gouilh M., Brugère‐Picoux J. The risk of SARS‐CoV‐2 transmission to pets and other wild and domestic animals strongly mandates a one‐health strategy to control the COVID‐19 pandemic // One Health. 2020. V. 10. Article ID 100133. DOI: 10.1016/j.onehlt.2020.100133

4. Tiwari R., Dhama K., Sharun K., Iqbal Yatoo M., Malik Y.S., Singh R., et al. COVID‐19: animals, veterinary and zoonotic links // Veterinary Quarterly. 2020. V. 40. Iss. 1. P. 169‐182. DOI: 10.1080/01652176.2020.1766725

5. Zhao J., Cui W., Tian B. The potential intermediate hosts for SARS‐CoV‐2 // Frontiers in Microbiology. 2020. V. 11. Article ID 580137. DOI: 10.3389/fmicb.2020.580137

6. Chakraborty C., Sharma A.R., Bhattacharya M., Sharma G., Lee S.S. The 2019 novel coronavirus disease (COVID‐19) pandemic: a zoonotic prospective // Asian Pacific Journal of Tropical Medicine. 2020. V. 13. Iss. 6. P. 242‐246. DOI: 10.4103/1995‐7645.281613

7. Nadeem M.S., Zamzami M.A., Choudhry H., Murtaza B.N., Kazmi I., Ahmad H., Shakoori A.R. Origin, potential therapeutic targets and treatment for coronavirus disease (COVID‐19) // Pathogens. 2020. V. 9. N 4. 307 p. DOI: 10.3390/pathogens9040307

8. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., et al. A novel coronavirus from patients with pneumonia in China 2019 // New England Journal of Medicine. 2020. V. 382. N 8. P. 727‐733. DOI: 10.1056/NEJMoa2001017

9. Ji W., Wang W., Zhao X., Zai J., Li X. Cross‐species transmission of the newly identified coronavirus 2019‐nCoV // Journal of medical virology. 2020. V. 92. Iss. 4. P. 433‐440. DOI: 10.1002/jmv.25682

10. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin // Nature. 2020. V. 579. P. 270‐273. DOI: 10.1038/s41586‐020‐2012‐7

11. Benvenuto D., Giovanetti M., Ciccozzi A., Spoto S., Angeletti S., Ciccozzi M. The 2019‐new coronavirus epidemic: evidence for virus evolution // Journal of Medical Virology. 2020. V. 92. P. 455‐459. DOI: 10.1002/jmv.25688

12. Guo Y.R., Cao Q.D., Hong Z.S., Tan Y.Y., Chen S.D., Jin H.J., et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID‐19) outbreak‐an update on the status // Military Medical Research. 2020. V. 7. 11 p. DOI: 10.1186/s40779‐020‐00240‐0

13. Sharun K., Sircar S., Malik Y.S., Singh R.K., Dhama K. How close is SARS‐CoV‐2 to canine and feline coronaviruses? // Journal of Small Animal Practice. 2020. V. 61. P. 523‐526. DOI: 10.1111/jsap.13207

14. Rabaan A.A., Al‐Ahmed S.H., Haque S., Sah R., Tiwari R., Malik Y.S., et al. SARS‐CoV‐2, SARS‐CoV, and MERS‐COV: a comparative overview // Infez Med. 2020. V. 28. N 2. P. 174‐184.

15. Wong G., Bi Y.H., Wang Q.H., Chen X.W., Zhang Z.G., Yao Y.G. Zoonotic origins of human coronavirus 2019 (HCoV‐19/SARS‐CoV‐2): why is this work important? // Zoological Research. 2020. V. 41. P. 213‐219. DOI: 10.24272/j.issn.2095‐8137.2020.031

16. Ji W., Wang W., Zhao X., Zai J., Li X. Cross‐species transmission of the newly identified coronavirus 2019‐nCoV // Journal of Medical Virology. 2020. V. 92. P. 433‐440. DOI: 10.1002/jmv.25682

17. Ortega J.T., Serrano M.L., Pujol F.H., Rangel H.R. Role of changes in SARS‐CoV‐2 spike protein in the interaction with the human ACE2 receptor: an in silico analysis // EXCLI Journal. 2020. V. 19. P. 410‐417. DOI: 10.17179/excli2020‐1167

18. Wan Y., Shang J., Graham R., Baric R.S., Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade‐long structural studies of SARS coronavirus // Journal of Virology. 2020. V. 94. N 7. DOI: 10.1128/JVI.00127‐20

19. Goumenou M., Spandidos D.A., Tsatsakis A. Possibility of transmission through dogs being a contributing factor to the extreme Covid‐19 outbreak in North Italy // Molecular Medicine Reports. 2020. V. 21. N 6. P. 2293‐2295. DOI: 10.3892/mmr.2020.11037

20. Schlottau K., Rissmann M., Graaf A., Schön J., Sehl J., Wylezich C., et al. SARS‐CoV‐2 in fruit bats, ferrets, pigs, and chickens: an experimental transmission study // Lancet Microbe. 2020. V. 1. P. E218‐E225. DOI: 10.1016/S2666‐5247(20)30089‐6

21. Xiao K., Zhai J., Feng Y., Zhou N., Zhang X., Zou J.‐J., et al. Isolation and characterization of 2019‐nCoV‐like coronavirus from Malayan Pangolins // bioRxiv. 2020. DOI: 10.1101/2020.02.17.951335

22. Zhang T., Wu Q., Zhang Z. Pangolin homology associated with 2019‐nCoV // bioRxiv. 2020. DOI: 10.1101/2020.02.19.950253

23. Liu P., Jiang J.Z., Wan X.F., Hua Y., Li L., et al. Are pangolins the intermediate host of the 2019 novel coronavirus (SARS‐CoV‐2)? // PLOS Pathogens. 2020. V. 16. N 5. e1008421. DOI: 10.1371/journal.ppat.1008421

24. Li X., Zai J., Zhao Q., Nie Q., Li Y., Foley B.T., et al. Evolutionary history, potential intermediate animal host, and cross‐species analyses of SARS‐CoV‐2 // Journal of Medical Virology. 2020. V. 92. Iss. 6. P. 602‐611. DOI: 10.1002/jmv.25731

25. Brennan D.S. Gorillas at San Diego Zoo Safari Park recover from COVID‐19 // Los Angeles Times. 2021. URL: https://www.latimes.com/california/story/2021‐02‐13/gorillas‐san‐diego‐zoo‐covid (accessed 17.01.2022)

26. Bao L., Deng W., Gao H., Xiao Ch., et al. Reinfection could not occur in SARS‐CoV‐2 infected rhesus macaques // bioRxiv. 2020. DOI: 10.1101/2020.03.13.990226

27. Deng W., Bao L., Liu J., Xiao Ch., et al. Primary exposure to SARS‐CoV‐2 protects against reinfection in rhesus macaques // Science. 2020. V. 369. P. 818‐823. DOI: 10.1126/science.abc5343

28. Lu Sh., Zhao Y., Yu W., Yang Y., et al. Comparison of SARS‐CoV‐2 infections among 3 species of non‐human primates // bioRxiv. 2020. DOI: 10.1101/2020.04.08.031807

29. Blair R.V., Vaccari M., Doyle‐Meyers L.A., Roy C.J., et al. Acute Respiratory Distress in Aged, SARS‐CoV‐2–Infected African Green Monkeys but Not Rhesus Macaques // The American Journal of Pathology. 2021. V. 191. P. 274‐282. DOI: 10.1016/j.ajpath.2020.10.016

30. Speranza E., Williamson B.N., Feldmann F., Sturdevant G.L., Pérez‐Pérez L., Meade‐White K., Smith B.J., Lovaglio J., Martens C., Munster V.J., Okumura A., Shaia C., Feldmann H., Best S.M., de Wit E. Single‐cell RNA sequencing reveals SARS‐CoV‐2 infection dynamics in lungs of African green monkeys // Science Translational Medicine. 2021. V. 13. Iss. 578. DOI: 10.1126/scitranslmed.abe8146

31. Rodriguez‐Morales A.J., Dhama K., Sharun K., Tiwari R., Bonilla‐Aldana D.K. Susceptibility of felids to coronaviruses // The Veterinary Record. 2020. V. 186. 21 p. DOI: 10.1136/vr.m1671

32. Csiszar A., Jakab F., Valencak T.G., Lanszki Z., Tóth G.E., Kemenesi G., et al. Companion animals likely do not spread COVID‐19 but may get infected themselves // GeroScience. 2020. V. 42. P. 1229‐1236. DOI: 10.1007/s11357‐020‐00248‐3

33. Salajegheh Tazerji S., Magalhães Duarte P., Rahimi P., Shahabinejad F., Dhakal S., Singh Malik Y., et al. Transmission of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) to animals: an updated review // Journal of Translational Medicine. 2020. V. 18. Article number: 358. DOI: 10.1186/s12967‐020‐02534‐2

34. Daly N. Seven more big cats test positive for coronavirus at Bronx Zoo // Animals. Coronavirus coverage. 2020. URL: https://www.nationalgeographic.com/animals/article/tiger‐coronavirus‐covid19‐positive‐test‐bronx‐zoo (accessed: 17.01.2022)

35. McAloose D., Laverack M., Wang L., Killian M.L., Caserta L.C., et. al. From People to Panthera: Natural SARS‐CoV‐2 Infection in Tigers and Lions at the Bronx Zoo // American society for microbiology. 2020. V. 11. N 5. DOI: 10.1128/mBio.02220‐20

36. Abdel‐Moneim A.S., Abdelwhab E.M. Evidence for SARS‐CoV‐2 Infection of Animal Hosts // Pathogens. 2020. V. 9. N 7. 529 p. DOI: 10.3390/pathogens9070529

37. Kim Y.I., Kim S.G., Kim S.M., Kim E.H., Park S.J., Yu K.M., Chang J.H., Kim E.J., Lee S., Casel M.A.B., et al. Infection and rapid transmission of SARS‐CoV‐2 in ferrets // Cell Host Microbe. 2020. V. 27. P. 704‐709. DOI: 10.1016/j.chom.2020.03.023

38. Freuling C.M., Breithaupt A., Müller T., Sehl J., Balkema‐Buschmann A., Rissmann M., Klein A., Wylezich C., Höper D., Wernike K., Aebischer A., Hoffmann D., Friedrichs V., Dorhoi A., Groschup M.H., Beer M., Mettenleiter T.C. Susceptibility of Raccoon Dogs for Experimental SARS‐CoV‐2 Infection // Emerging Infectious Diseases. 2020. V. 26. N 12. P. 2982‐2985. DOI: 10.3201/eid2612.203733

39. Bosco‐Lauth A.M., et al. Peridomestic Mammal Susceptibility to Severe Acute Respiratory Syndrome Coronavirus 2 Infection // Emerging Infectious Diseases. 2021. V. 27. N 8. P. 2073‐2080. DOI: 10.3201/eid2708.210180

40. Liu Z., Xiao X., Wei X., Li J., Yang J., Tan H., et al. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS‐CoV‐2 // Journal of Medical Virology. 2020. V. 92. P. 595‐601. DOI: 10.1002/jmv.25726

41. Chen Y., Guo Y., Pan Y., Zhao Z.J. Structure analysis of the receptor binding of 2019‐nCoV // Biochemical and Biophysical Research Communications. 2020. V. 525. Iss. 1. P. 135‐140. DOI: 10.1016/j.bbrc.2020.02.071

42. Luan J., Jin X., Lu Y., Zhang L. SARS‐CoV‐2 spike protein favors ACE2 from Bovidae and Cricetidae // Journal of Medical Virology. 2020. V. 92. Iss. 9. P. 1649‐1656. DOI: 10.1002/jmv.25817

43. Manes C., Gollakner R., Capua I. Could Mustelids spur COVID‐19 into a panzootic? // Veterinaria Italiana. 2020. V. 56. P. 65‐66. DOI: 10.12834/VetIt.2375.13627.1

44. Shaart E. 6 countries have coronavirus on mink farms // UN Health Agency. 2020. URL: https://www.politico.eu/article/6‐countries‐coronavirus‐mink‐farm‐un‐health‐agency/ (accessed: 17.01.2022)

45. Tiwari R., Dhama K., Sharun Kh., Iqbal Yatoo M., et. al. COVID‐19: animals, veterinary and zoonotic links //Veterinary Quarterly. 2020. V. 40. N 1. P. 169‐182. DOI: 10.1080/01652176.2020.1766725

46. SARS‐CoV‐2 mink‐associated variant strain – Denmark // Word Health Organization. 2020. URL: https://www.who.int/emergencies/disease‐outbreak‐news/item/2020‐DON301#:~:text=On%205%20November%2C%20the%20Danish,from%20August%20to%20September%202020 (accessed: 17.01.2022)

47. Opriessnig T., Huang Y.W. Further information on possible animal sources for human COVID‐19 // Xenotransplantation. 2020. V. 27. Iss. 6. e12651. DOI: 10.1111/xen.12651

48. Cahan E. COVID‐19 hits US mink farms after ripping through Europe // Science. 2020. DOI: 10.1126/science.abe3870

49. Oreshkova N., Molenaar R.J., Vreman S., Harders F., Oude Munnink B.B., et. al. SARS‐CoV‐2 infection in farmed minks, the Netherlands, April and May 2020 // Euro Surveillance. 2020. V. 25. N 23. DOI: 10.2807/1560‐7917.ES.2020.25.23.2001005

50. Sharun Kh., Tiwari R., Natesan S., Dhama K. SARS‐CoV‐2 infection in farmed minks, associated zoonotic concerns, and importance of the One Health approach during the ongoing COVID‐19 pandemic // Veterinary Quarterly. 2021. V. 41. N 1. 50 p. DOI: 10.1080/01652176.2020.1867776

51. Pickering B.S., Smith G., Pinette M.M., Embury‐Hyatt C., Moffat E., Marszal P. Susceptibility of Domestic Swine to Experimental Infection with Severe Acute Respiratory Syndrome Coronavirus 2 // Emerging Infectious Diseases. 2021. V. 27. N 1. 104 p. URL: https://dx.doi.org/10.3201/eid2701.203399 (accessed: 17.01.2022)

52. Meekins D.A., Morozov I., Trujillo J.D., Gaudreault N.N., Bold D., Carossino M., Artiaga B.L., Indran S.V., Kwon T., Balaraman V., Madden D.W., Feldmann H., Henningson J., Ma W., Balasuriya U.B.R., Richt J.A. Susceptibility of swine cells and domestic pigs to SARS‐CoV‐2 // Emerging Microbes & Infections. 2020. V. 1. P. 2278‐2288. DOI: 10.1080/22221751.2020.1831405

53. Lorusso A., Calistri P., Petrini A., Savini G., Decaro N. Novel coronavirus (SARS‐CoV‐2) epidemic: a veterinary perspective Article // Veterinaria Italiana. 2020. V. 56. DOI: 10.12834/VetIt.2173.11599.1

54. Lorenz U. et al. Experimental Infection of Cattle with SARS‐CoV‐2 // Emerging Infectious Diseases. 2020. V. 26. N 12. P. 2979‐2981. DOI: 10.3201/eid2612.203799

55. Shi J., Wen Z., Zhong G., Yang H., Wang C., et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS‐coronavirus 2 // Science. 2020. V. 368. P. 1016‐1020. DOI: 10.1126/science.abb7015

56. Aktual'nye dannye MJeB o COVID‐19 u zhivotnyh [Actual Office International des Epizooties’ data on COVID‐19 in animals]. Аvailable at: https://fsvps.gov.ru/fsvps/news/35884.html (accessed: 07.02.2021)

57. Loeb J. Pet dog confirmed to have coronavirus // The Veterinary Record. 2020. V. 186. 265 p. DOI: 10.1136/vr.m892

58. Sit T.H.C., Brackman C.J., Ip S.M., Tam K.W.S., Law P.Y.T., To E.M.W., et al. Infection of dogs with SARS‐CoV‐2 // Nature. 2020. V. 586. P. 776‐778. DOI: 10.1038/s41586‐020‐2334‐5

59. Donnik I.M., Popov I.V., Sereda S.V., Popov Il.V., Chikindas M.L., Ermakov A.M. Coronavirus infections in animals: future risks for humans. The Russian Academy of Sciences News. Biological series, 2021, no. 1, pp. 30‐43. (In Russian) DOI: 10.31857/S0002332921010057

60. Zhang Q., Zhang H., Gao J., Huang K., Yang Y., Hui X., et al. A serological survey of SARS‐CoV‐2 in cat in Wuhan // Emerging Microbes & Infections. 2020. V. 9. P. 2013‐2019. DOI: 10.1080/22221751.2020.1817796

61. Newman A., Smith D., Ghai R.R., Wallace R.M., Torchetti M.K., Loiacono C., et al. First reported cases of SARS‐CoV‐2 infection in companion animals–New York, March‐April 2020 // MMWR Morbidity and Mortality Weekly Report. 2020. V. 69. N23. P. 710‐713. DOI: 10.15585/mmwr.mm6923e3

62. Confirmation of COVID‐19 in Two Pet Cats in New York // Centers for Disease Control and Prevention Newsroom. 2020. URL: https://www.cdc.gov/media/releases/2020/s0422‐covid‐19‐cats‐NYC.html (accessed: 17.01.2022)

63. Garigliany M., Van Laere A.S., Clercx C., Giet D., Escriou N., Huon C., et al. SARS‐CoV‐2 natural transmission from human to cat, Belgium, March 2020 // Emerging Infectious Disieases. 2020. V. 26. N 12. P. 3069‐3071. DOI: 10.3201/eid2612.202223

64. Shi J., Wen Z., Zhong G., Yang H., Wang C., Huang B., et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS‐coronavirus 2 // Science. 2020. V. 368. N 6494. P. 1016‐1020. DOI: 10.1126/science.abb7015

65. Mallapaty S. Coronavirus can infect cats‐dogs, not so much // Nature. 2020. DOI: 10.1038/d41586‐020‐00984‐8

66. Abdel‐Moneim A.S., Abdelwhab E.M. Evidence for SARS‐CoV‐2 infection of animal hosts // Pathogens. 2020. V. 9. N 7. 529 p. DOI: 10.3390/pathogens9070529

67. Gautam A., Kaphle K., Shrestha B., Phuyal S. Susceptibility to SARS, MERS, and COVID‐19 from animal health perspective // Open Veterinary Journal. 2020. V. 10. N 2. 164 p. DOI: 10.4314/ovj.v10i2.6


Review

For citations:


Fedotova M.S., Filippova A.Yu., Omarov M.A., Yurchenko K.S., Gulyaeva M.A. SARS‐CoV‐2: the prospects of the virus spreading and the course of the pathogenesis of coronavirus infection in various species of animals. South of Russia: ecology, development. 2022;17(1):6-16. (In Russ.) https://doi.org/10.18470/1992-1098-2022-1-6-16

Views: 447


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1992-1098 (Print)
ISSN 2413-0958 (Online)