Specific features of antagonism of Bacillus bacteria against toxinogenic Fusarium fungi in protecting plants against disease and contamination with mycotoxins (review)
https://doi.org/10.18470/1992-1098-2021-4-86-103
Abstract
Aim. Summarize and analyze information on the results of studies on the antagonistic properties of Bacillus bacteria against phytopathogenic fungi of the genus Fusarium.
Materials and Methods. Current information of research by Russian and foreign scientists on the role of bacteria of the genus Bacillus to suppress Fusarium diseases of plants and contamination of plant products with mycotoxins was studied and critically analysed.
Results. Information on the prospects for the use of bacteria‐antagonists of phytopathogenic fungi of the genus Bacillus for plant protection against diseases caused by toxinogenic fungi of the genus Fusarium has been generalized. The role of lipopeptides produced by bacteria in inhibiting the growth of fungi, which manifests itself both through the destruction of the cell wall of the fungus and by increasing the immune status of the plant, has been shown. The study contains information on the structure and mechanism of action of the main anti‐fungal cyclic lipopetides. The features of the manifestation of the antagonistic properties of Bacillus bacteria, which consist in the ability of bacterial metabolites to destroy mycotoxins which can help to reduce their toxicity, have been disclosed. The prospect of searching for bacterial strains of the genus Bacillus suitable for creating effective biofungicides against Fusarium fungi is substantiated.
Conclusion. Knowledge of the mechanisms of action of bacteria of the genus Bacillus as antagonists of Fusarium fungi will contribute to the careful selection of strains that are promising for the development of effective biological products for replacing chemical fungicides with biofungicides in the control of F. graminearum and its mycotoxins, which will make it possible to obtain products that are not burdened with either chemical means of protection or mycotoxins which are dangerous for consumers.
About the Authors
T. M. SidorovaRussian Federation
Tatyana M. Sidorova, PhD in Biology, Senior Researcher
p/o 39 Krasnodar, Krasnodar Krai, 350039
Tel. +79280387012
A. M. Asaturova
Russian Federation
Anzhela M. Asaturova
Krasnodar
V. V. Allakhverdyan
Russian Federation
Valeria V. Allakhverdyan
Krasnodar
References
1. Levitin M.M., Dzhavahija V.G. Toxigenic fungi and food security problems (review). Achievements of science and technology of the agro‐industrial complex, 2020, vol. 34, no. 12, pp. 5‐11. (In Russian) DOI: 10.24411/0235‐2451-2020‐11201
2. Gagkaeva T.Ju., Gavrilova O.P., Levitin M.M., Novozhilov K.V. Fusarium of cereals. Zashchita i karantin rastenii [Plant protection and quarantine]. 2011, no. 5, pp. 69‐120. (In Russian)
3. Gagkaeva T.Yu., Gavrilova O.P., Orina A.S. Identification of toxin‐producing fungi of the genus Fusarium in winter wheat grain in the Central region of the European part of Russia. Uspekhi meditsinskoi mikologii [Advances in medical mycology]. 2018, vol. 19, no. 9, pp. 299‐303. (In Russian)
4. Sokolova G.D., Glinushkin A.P. Antagonists of the phytopathogenic fungus Fusarium graminearum. Mikologiya i fitopatologiya [Mycology and phytopathology]. 2017, vol. 51, no. 4, pp. 191‐201. (In Russian)
5. Bertero A., Moretti A., Spicer L.J., Caloni F. Fusarium molds and mycotoxins: potential species‐specific effects // Toxins (Basel). 2018. V. 10. N6. 244 p. DOI: 10.3390/toxins10060244
6. Tan J., Ameye M., Landschoot S., De Zutter N., De Saeger S., De Boevre M., Abdallah M.F., Van der Lee T., Wallwijk C., Audenaert K. At the scene of the crime: new insights into the role of weakly pathogenic members of the Fusarium head blight disease complex // Mol. plant. pathol. 2020. V. 21. N12. P. 1559‐1572. DOI: 10.1111/mpp.12996
7. Pickova D., Ostry V., Malir J., Toman J., Malir F. A review on mycotoxins and microfungi in spices in the light of the last five years // Toxins (Basel). 2020. V. 12. N12. 789 p. DOI: 10.3390/toxins12120789
8. Pellan L., Durand N., Martinez V., Fontana A., Schorr-Galino S., Strub C. Commercial biocontrol agents reveal contrasting comportments against two mycotoxigenic fungi in cereals: Fusarium graminearum and Fusarium verticillioides // Toxins. 2020. V. 12. 152 p. DOI: 10.3390/toxins12030152
9. Penha R.O., Vandenberghe L.P.S., Faulds C., Soccol V.T., Soccol C.R. Bacillus lipopeptides as powerful pest control agents for a more sustainable and healthy agriculture: recent studies and innovations // Planta. 2020. V. 25. N1. 70 p. DOI: 10.1007/s00425‐020‐03357‐7
10. Pan D., Mionetto A., Tiscornia S., Bettucci L. Endophytic bacteria from wheat grain as biocontrol agents of Fusarium graminearum and deoxynivalenol production in wheat // Mycotoxin. 2015. V. 31. P. 137‐143. DOI: 10.1007/s12550‐015‐0224‐8
11. Vahidinasab M., Lilge L., Reinfurt A., Pflannstiel A., Pflannstiel J., Henkel M., Heravi K.M., Hausman R. Construction and description of a constitutive plipastatin mono‐producing Bacillus subtilis // Microb. cell. fact. 2020. V. 19. 205 p. DOI: 10.1186/s12934‐020‐01468‐0
12. Miljaković D., Marinković J., Balešević‐Tubić S. The Significance of Bacillus spp. in Disease Suppression and Growth Promotion of Field and Vegetable Crops // Microorganisms. 2020. V. 8. N7. 1037 p. DOI: 10.3390/microorganisms8071037
13. Kang X., Zhang W., Cai X., Tong Z., XueY., Liu C. Bacillus velezensis CCO9: a potential «vaccine» for controlling wheat diseases // Published online, 2018. V. 31. N6. DOI: 10.1094/MPMI‐09‐17‐0227‐R
14. Legard F., Picot A., Cobo‐Diaz J.F., Chen W., Le Floch G. Challenges facing the biological control strategies for the management of Fusarium head blight of cereals caused by F. graminearum // Biological control. 2017. V. 11. P. 26‐38. DOI: 10.1016/j.biocontrol.2017.06.11
15. Sidorova T.M., Asaturova A.M., Homjak A.I. Biologically active metabolites of Bacillus subtilis and their role in the control of phytopathogenic microorganisms (review). Agricultural Biology, 2018, vol. 53, no. 1, pp. 29‐37. (In Russian) DOI: 10.1589/agrobiology.2018.1.29rus
16. Maksimov I.V., Singh B.P., Cherepanova E.A., Burhanova G.F., Hajrullin R.M. Prospects for the use of bacteria ‐ lipopeptide producers for plant protection. Applied Biochemistry and Microbiology, 2020, vol. 56, no. 1, pp. 19‐54. (In Russian) DOI: 10.31857/s0555109920010134
17. Köhl J., Kolnaar R., Ravensberg W.J. Мode of action of microbial biological control agents against plant diseases: relevance beyond efficacy // Frontiers in plant science. 2019. V. 10. 845 p. DOI: 10.3389/fpls.2019.00845
18. Gong A.D., Li H.P., Yuan Q.S., Song X.S., Yao W., He W.J., Zhang J.B., Liao Y.C. Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliqiefaciens S76‐3 from wheat spikes against Fusarium graminearum // PLosOne. 2015. V. 10. Iss. 2. e0116871. DOI: 10.1371/journal.pone.0116871
19. Cai X.C., Liu C.H., Wang B.T., Xue Y.R. Genomic and metabolic traits endow Bacillus velezensis CC09 with a potential biocontrol agent in control of wheat powdery mildew disease // Microbiol. Res. 2017. V. 196. P. 89‐94. DOI: 10.1016/j.micres.2016.12.007
20. Salasar F., Ortiz A., Sansinenea E. Characterisation of two novel bacteriocin‐like substances produced by Bacillus amyloliquefaciens ELI149 with broad‐spectrum antimicrobial activity // Journal of global antimicrobial resistance. 2017. V. 11. P. 177‐182. DOI: 10.1016/j.jgar.2017.08.008
21. Palazzini J.M., Dunlap C.A., Bowman M.J., Chulze S.N. Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: Genome sequencing and secondary metabolite cluster profiles // Microbiol Res. 2016. V. 19. P. 30‐36. DOI: 10.1016/j.micres.2016.06.002
22. Asaturova A.M., Dubjaga V.M. Bacillus subtilis BZR 517 bacterial strain for obtaining a biological product against phytopathogenic fungi. Patent RF, no. 2552146, 2015.
23. Asaturova A.M., Dubjaga V.M. Bacillus subtilis BZR 336g bacterial strain for obtaining a biological product against phytopathogenic fungi. Patent RF, no. 2553518, 2015.
24. Sidorova T.M., Asaturova A.M., Homjak A.I., Tomashevich N.S. Isolation and characterization of antifungal metabolites of Bacillus subtilis BZR 336g and Bacillus subtilis BZR517 strains by a modified bioautography method. Agricultural biology, 2019, vol. 54, no. 1, pp. 178‐185. (In Russian) DOI: 10.15389/agrobiology.2019.1.178rus
25. Kim К., Lee Y., Ha A., Kim J.I., Park A.R., Yu N.H., Son H., Choi G.J., Park H.W., Lee C.W., Lee T., Lee Y.W., Kim J.C. Chemosensitization of Fusarium graminearum to chemical fungicides using cyclic lipopeptides produced by Bacillus amyloliquefaciens strain JCK‐12 // Frontiers in plant science. 2017. V. 8. DOI: 10.3389/fpls.2017.02010
26. Xu W., Zhang L., Goodwin P.H., Xia M., Zhang J., Wang Q., Liang J., Sun R., Wu C., Yang L. Isolation, identification, and complete genome assembly of an endophytic Bacillus velezensis YB‐130, potential biocontrol agent against Fusarium graminearum // Front. Microbial. 2020. V. 11. DOI: 10.3389/fmicb.2020.598285
27. Fira D., Dimkić I., Berić T., Lozo J., Stanković S. Biological control of plant pathogens by Bacillus species // J Biotechnol. 2018. V. 285. P. 44‐55. DOI: 10.1016/j.jbiotec.2018.07.044
28. Ntushelo K., Ledwaba L.K., Rauwane M.E., Adebo O.A., Njobeh P.B. The mode of action of Bacillus species against Fusarium graminearum, tools for investigation, and future prospects // Toxins (Basel). 2019. V. 11. N10. 606 p. DOI: 10.3390/toxins11100606
29. Hazarika D.J., Goswami G., Gautom T., Parveen A., Das P., Barooah M., Chandra R. Lipopeptide mediated biocontrol activity of endophytic Bacillus subtilis against fungal phytopathogens // BMC Microbiol. 2019. V. 19. 71 p. DOI: 10.1186/s12866‐019‐1440‐8
30. Zhang F., Huo K., Song X., Quan Y., Wang S., Zhang Z., Gao W., Yang C. Engineering of a genome‐reduced strain Bacillus amyloliquefaciens for enhancing surfactin production // Microb. Cell.fact. 2020. V. 19. 223 p. DOI: 10.1186/s12934‐020‐01485‐z
31. Rabbee M.F., Ali M. S., Choi J., Hwang B.S., Jeong S.C., Baek K.H. Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes // Molecules (Basel, Switzerland). 2019. V. 24. N6. 1046 p. DOI: 10.3390/molecules24061046
32. Stein T. Bacillus subtilis antibiotics: Structures, synthesis and specific functions // Mol. Microbiol. 2005. V. 56. P. 845‐857. DOI: 10.1111/j.1365‐2958.2005.04587.x
33. Caulier S., Nannan C., Gillis A., Licciardi F., Bragard C., Mahillon J. Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group // Front. Microbiol. 2019. V. 10. 302 p. DOI: 10.3389/fmicb.2019.00302
34. Malviya D., Sahu P.K., Singh U.B., Paul S., Gupta A., Gupta A.K., Singh S., Kumar M., Paul D., Rai J.P., Singh H.V., Brahmaprakash G.P. Lesson from ecotoxity: revising the microbial lipopeptides for the management of emerging diseases of crop protection // Int J. Environ Res Public Health. 2020. V. 17. Iss. 4. 1434 p. DOI: 10.3390/ijerph17041434
35. Yaseen Y., Diop A., Gancel F., Béchet M., Jacques P., Drider D. Polynucleotide phosphorylase is involved in the control of lipopeptide fengycin production in Bacillus subtilis // Arch Microbiol. 2018. V. 200. P. 783‐791. DOI: 10.1007/s00203‐018‐1483‐5
36. Zhao X., Kuipers O.P. Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species // BMC Genomics. 2016. V. 17. pp. 882. DOI: 10.1186/s12864‐016‐3224‐y
37. Aleti G., Lehner S., Bacher M., Compant S., Nikolic B., Plesko M., Schumacher R., Sessitsch A., Lehner S., Brader G. Surfactin variants mediate species‐specific biofilm formation and root colonization in Bacillus // Environ. Microbial. 2016. V. 18. N8. P. 2634‐2645. DOI: 10.1111/1462‐2920.13405
38. Lozo J., Topisirovic L., Kojic M. Natural bacterial isolates as an inexhaustible source of new bacteriocins // Appl. Microbiol. Biotechnol. 2021. V. 105. P. 477‐492. DOI: 10.1007/s00253‐020‐11063‐3
39. Fan H., Ru J., Zhang Y., Wang Q., Li Y. Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease // Microbiol Res. 2017. V. 199. P. 89‐97. DOI: 10.1016/j.micres.2017.03.004
40. Hanif A., Zhang F., Li P., Li C., Xu Y., Zubair M., Zhang M., Jia D., Zhao X., Liang J., Majid T., Yan J., Farzand A., Wu H., Gu Q., Gao X. Fengycin produced by Bacillus amyloliquefaciens FZB42 inhibits Fusarium graminearum growth and mycotoxins biosynthesis // Toxins (Basel). 2019. V. 11. N5. pp. 295. DOI: 10.3390/toxins11050295
41. Zakharova A.A., Efimova S.S., Malev V.V., Ostroumova O.S. Fengycin induces ion channels in lipid bilayers mimicking target fungal cell membranes // Sci Rep. 2019. V. 9. N1. P. 16‐34. DOI: 10.1038/s41598‐019‐52551‐5
42. Sa R.B., An X., Sui J.K., Wang X.H., Ji C., Wang C.Q., Li Q., Hu Y.R., Liu X. Purification and structural characterization of fengycin homologues produced by Bacillus subtilis from poplar wood bark // Australas. Plant Pathol. 2018. V. 47. P. 259‐268. DOI: 10.1007/s13313‐018‐0552‐1
43. Kaki A.A., Smargiasso N., Ongena M., Ali M.K., Moula N., de Pauw E., Chaouche N.K. Characterization of new fengycin cyclic lipopeptide variants produced by Bacillus amyloliquefaciens (ET) originating from a Salt Lake of Eastern Algeria // Curr Microbiol. 2020. V. 77. P. 443‐451. DOI: 10.1007/s00284‐019‐01855‐w
44. Yaseen Y., Gancel F., Drider D., Béchet M., Jacques P. Influence of promoters on the production of fengycin in Bacillus spp. // Res. Microbiol. 2016. V. 167. P. 272‐281. DOI: 10.1016/j.resmic.2016.01.008
45. Zhou S., Liu G., Zheng R., Sun C., Wu S. Structural and functional insights into iturin W, a novel lipopeptide produced by deep‐sea bacterium Bacillus sp. strain WSM‐1 // Appl. environ. microbiology. 2020. V. 86. N21. DOI: 10.1128/AEM.01597‐20
46. Dunlap C.A., Bowman M.J., Rooney A.P. Iturinic lipopeptide diversity in the Bacillus subtilis species group important antifungals for plant disease biocontrol applications // Front Microbiol. 2019. V. 10. 1794. DOI: 10.3389/fmicb.2019.01794
47. Lee T., Park D., Kim K., Lim S.M., Yu N.H., Kim S., Kim H.Y., Jung K.S., Jang J.Y., Park J.C., et al. Characterization of Bacillus amyloliquefaciens DA12 showing potent antifungal activity against mycotoxigenic Fusarium species // Plant Pathol. J. 2017. V. 33. P. 499‐507. DOI: 10.5423/PPJ.FT.06.2017.0126
48. Cao Y., Pi H., Chandrangsu P., Li Y., Wang Y., Zhou H., Xiong H., Helmann J.D., Cai Y. Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum // Sci. Rep. 2018. V. 8. DOI: 10.1038/s41598‐018‐22782‐z
49. De Souza C.G., Martins F.I.C.C., Zocolo G.J., Figueiredo J.E.F., Canuto K.M., de Brito E.S. Simultaneous quantification of lipopeptide isoforms by UPLC‐MS in the fermentation broth from Bacillus subtilis CNPMS22 // Anal. Bioanal.Chem. 2018. V. 41. P. 6827‐6836. DOI: 10.1007/s00216‐018‐1281‐6
50. Kumar M., Brar A., Yadav M., Chawade A., Vivekanand V., Pareek N. Chitinases – potential candidates for enhanced plant resistance towards fungal pathogens // Agriculture. 2018. V. 8. P. 88. DOI: 10.3390/agriculture8070088
51. Gamalero E., Glick B.R. Bacterial modulation of plant ethylene levels // Plant Physiol. 2015. V. 169. N1. P. 13‐22. DOI: 10.1104/pp.15.00284
52. Olanrewaju O.S., Ayangbenro A.S., Glick B.R., Babalola O.O. Plant health: feedback effect of root exudates-rhizobiome interactions // Appl Microbiol Biotechnol. 2019. V. 103. N3. P. 1155‐1166. DOI: 10.1007/s00253‐018‐9556‐6
53. Schellenberger R., Touchard M., Clément C., Baillieul F., Cordelier S., Crouzet J., Dorey S. Apoplastic invasion patterns triggering plant immunity: plasma membrane sensing at the frontline // Molecular plant pathology. 2019. V. 20. N11. P. 1602‐1616. DOI: 10.1111/mpp.12857
54. Hashem A., Tabassum B., Fathi Abd Allah E. Bacillus subtilis: A plant‐growth promoting rhizobacterium that also impacts biotic stress // Saudi J Biol Sci. 2019. V. 26. N6. P. 1291‐1297. DOI: 10.1016/j.sjbs.2019.05.004
55. Jinal N.H., Amaresan N. Evaluation of biocontrol Bacillus species on plant growth promotion and systemic-induced resistant potential against bacterial and fungal wilt‐causing pathogens // Archives of microbiology. 2020. V. 202. P. 1785‐1794. DOI: 10.1007/s00203‐020‐01891‐2
56. Pršić J., Ongena M. Elicitors of plant immunity triggered by beneficial bacteria // Front. Plant Sci. 2020. V. 11. DOI: 10.3389/fpls.2020.594530
57. Sajid M., Ahmad Khan M.S., Singh Cameotra S., Safar Al‐Thubiani A. Biosurfactants: Potential applications as immunomodulator drugs // Immunol Lett. 2020. V. 223. P. 71‐77. DOI: 10.1016/j.imlet.2020.04.003
58. Chen S.W., Wang H.T., Shih W.Y., Ciou Y.A., Chang Y.Y., Ananda L., Wang S.Y., Hsu J.T. Application of zearalenone (ZEN)‐detoxifying Bacillus in animal feed decontamination through fermentation // Toxins. 2019. V. 11. N6. P. 330. DOI: 10.3390/toxins11060330
59. Tran V.N., Viktorová J., Ruml, T. Mycotoxins: biotransformation and bioavailability assessment using Caco‐2 cell monolayer // Toxins. 2020. V. 12. N10. P. 628. DOI: 10.3390/toxins12100628
60. Dweba C.C., Filan S., Shimelis H.A., Motaung T.E., Sydenham S., Mwadzingeni L., Tsilo T.J. Fusarium head blight of wheat: pathogenesis and control strategies // Crop protection. 2017. V. 91. P. 114‐122. DOI: 10.1016/j.cropro.2016.10.002
61. Chen Y., Kistler H.C., Ma Z. Fusarium graminearum trichothecene mycotoxins: biosynthesis, regulation, and management // Annu Rev Phytopathol. 2019. V. 57. P. 15‐39. DOI: 10.1146/annurev‐phyto‐082718-100318
62. Sokolova G.D., Glinushkin A.P. Mechanisms of resistance to fungicides of the phytopathogenic fungus Fusarium graminearum. Mycology and Phytopathology, 2020, vol. 54, no. 6, pp. 391‐403. (In Russian) DOI: 10.31857/S0026364820060112
63. Wu Q., Kuča K., Humpf H.U., Klímová B., Cramer B. Fate of deoxynivalenol and deoxynivalenol‐3‐glucoside during cereal‐based thermal food processing: a review study // Mycotoxin Res. 2017. V. 33. N1. P. 79‐91. DOI: 10.1007/s12550‐016‐0263‐9
64. Kovač T., Šarkanj B., Borišev I., Djordjevic A., Jović D., Lončarić A., Babić J., Jozinović A., Krska T., Gangl J., Ezekiel C.N., Sulyok M., Krska R. Fullerol C60 (OH) 24 nanoparticles affect secondary metabolite profile of important foodborne mycotoxigenic fungi in vitro // Toxins (Basel). 2020. V. 12. N4. P. 213. DOI: 10.3390/toxins12040213
65. Ben Taheur F., Kouidhi B., Al Qurashi Y.M.A., Ben Salah‐Abbès J., Chaieb K. Review: biotechnology of mycotoxins detoxification using microorganisms and enzymes // Toxicon. 2019. V. 160. P. 12‐22. DOI: 10.1016/j.toxicon.2019.02.001
66. Luo Y., Liu X., Li J. Updating on controlling mycotoxins a review // Food control. 2018. V. 89. P. 123‐132. DOI: 10.1016/j.foodcont.2018.01/016
67. Iram W., Anjum T., Iqbal M., Ghaffar A., Abbas M. Structural elucidation and toxicity assessment of degraded products of aflatoxin B1 and B2 by aqueous extracts of Trachyspermum ammi // Front. Microbiol. 2016. V. 7. P. 346. DOI: 10.3389/fmicb.2016.00346
68. Adebo O.A., Njobeh P.B., Gbashi S., Nwinyi O.C., Mavumengwana V. Review on microbial degradation of aflatoxins Crit // Rev. Food Sci. Nutr. 2017. vol. 57. N15. P. 3208‐3217. DOI: 10.1080/10408398.2015.1106440
69. Zhu Y., Hassan Y.I., Lepp D., Shao S., Zhou T. Strategies and methodologies for developing microbial detoxification systems to mitigate mycotoxins // Toxins. 2017. V. 9, no. 4, pp. 130. https://doi.org/10.3390/toxins9040130
70. Li P., Su R., Yin R., Lai D., Wang M., Liu Y., Zhou L. Detoxication of micotoxication thrugh biotransformation // Toxins. 2020. V. 12. P. 121. DOI: 10.3390/toxins12020121
71. Vanhoutte J., Audenaert K., Gelder L. Biodegradation of mycotoxins: tales from known and unexplored worlds // Front. Microbiоl. 2016. V. 7. P. 561. DOI: 10.3389/fmicb.2016.00561
72. Wilson N.M., McMaster N., Gantulga D., Soyars C., McCormick S.P., Knoff K., Senger R.S., Schmale D.G. Modification of the mycotoxin deoxynivalenol using microorganisms isolated from environmental samples // Toxins. 2017. V. 9. N4. P. 141. DOI: 10.3390/toxins9040141
73. Wang S., Hou Q., Guo Q., Zhang J., Sun Y., Wei H., Shen L. Isolation and characterization of a deoxynivalenol-degrading bacterium Bacillus licheniformis YB9 with the capability of modulating intestinal microbial flora of mice // Toxins. 2020. V. 12. N3. P. 184. DOI: 10.3390/toxins12030184
74. Jia R., Sadiq F.A., Liu W., Cao L., Shen Z. Protective effects of Bacillus subtilis ASAG 216 on growth performance, antioxidant capacity, gut microbiota and tissues residues of weaned piglets fed deoxynivalenol contaminated diets // Food. Chem. Toxicol. 2021. V. 4. DOI: 10.1016/j.fct.2020.111962
75. He J.W., Bondy G.S., Zhou T., Caldwell D., Boland G.J., Scott P.M. Toxicology of 3‐epi‐deoxynivalenol, a deoxynivalenol‐transformation product by Devosia mutans 17‐2‐E‐8 // Food Chem. Toxicol. 2015. V. 84. P. 250‐259. DOI: 10.1016/j.fct.2015.09.003
76. Snini S.P., Mathieu F. Biocontrol agents and natural compounds against mycotoxinogenic fungi // Toxins. 2020. V. 12. P. 353. DOI: 10.3390/toxins12060353
77. He W.J., Yuan Q.S., Zhang Y.B., Guo M.W., Gong A.D., Zhang J.B., Wu A.B., Huang T., Qu B., Li H.P., Liao Y.C. Aerobic de‐epoxydation of trichothecene mycotoxins by a soil bacterial consortium isolated using in situ soil enrichment // Toxins. 2016. V. 8. Iss. 10. DOI: 10.3390/toxins8100277
78. Jimenez‐Sanchez C., Wilson N., McMaster N., Gantulga D., Freedman B.G., Senger R., Schmale D. A mycotoxin transporter (4D) frjm a library of deoxynivalenol‐tolerant microorganisms // ToxiconX. 2020. V. 5. DOI: 10.1016/j.toxcx.2020.100023
79. Tian Y., Tan Y., Liu N., Liao Y., Sun C., Wang S., Wu A. Functional agents to biologically control deoxynivalenol contamination in cereal grains. Front Microbiol., 2016, vol. 7, pp. 395. DOI: 10.3389/fmicb.2016.00395
80. Yao Y., Long M. The biological detoxification of deoxynivalenol: A review // Food chem toxicol. 2020. V. 145. DOI: 10.1016/j.fct.2020.111649
81. Bryła M., Waśkiewicz A., Ksieniewicz‐Woźniak E., Szymczyk K., Jędrzejczak R. Modified Fusarium mycotoxins in cereals and their products‐metabolism, occurrence, and toxicity: an updated review // Molecules (Basel, Switzerland). 2018. V. 23. N4. P. 963. DOI: 10.3390/molecules23040963
82. Chen S.W., Wang H.T., Shih W.Y., Ciou Y.A., Chang Y.Y., Ananda L., Wang S.Y., Hsu J.T. Application of zearalenone (ZEN)‐detoxifying Bacillus in animal feed decontamination through fermentation // Toxins (Basel). 2019. V. 11. N6. P. 330. DOI: 10.3390/toxins.11060330
83. Abdallah M.F., De Boevre M., Landschoot S., De Saeger S., Haesaert G., Audenaert K. Fungal еndophytes сontrolFusarium graminearum and reduce trichothecenes and zearalenone in maize // Toxins. 2018. V. 10. N12. P. 493. DOI: 10.3390/toxins10120493
84. Dunlap C.A., Schisler D.A., Price N.P., Vaughn S.F. Cyclic lipopeptide profile of three Bacillus subtilis strains; antagonists of Fusarium head blight // J Microbiol. 2011. V. 49. N4. P. 603‐609. DOI: 10.1007/s12275‐011‐1044‐y
85. Cao K., Guan M., Chen K., Lin Y., Luo C. Screening of Fusarium graminearum and degradation of vomitoxin B. amyloliquefaciens and its application in feed storange // Enviromental chemistry. 2019. V. 16. N3. P. 179‐186. DOI: 10.1071/EN18176
86. Chan Y.K., Savard M.E., Reid L.M., Cyr T., McCormick W.A., Seguin C. Identification of lipopeptide antibiotics of a Bacillus subtilis isolate and their control of Fusarium graminearum diseases in maize and wheat // BioControl. 2009. V. 54. P. 567. DOI: 10.1007/s10526‐008‐9201‐x
87. Yu Z., Ding K., Liu S., Li Y., Li W., Li Y., Cao P., Liu Y., Sun E. Screening and identification of a Bacillus cereus degrading vomitotoxin // Food sci. 2016. V. 37. P. 121‐125.
88. Jian T., Yang S., Su H., Wu Y., Tong Y. Identification and degradation effect of a Bacillus subtilis degrading vomitotoxin // Contemporary chem. 2018. V. 47. P. 548‐551.
89. Shi C., Yan P., Li J., Wu H., Li Q., Guan S. Biocontrol of Fusarium graminearum growth and deoxynivalenol production in wheat kernels with bacterial antagonists // Int J Environ Res Public Health. 2014. V. 11. N1. P. 100‐113. DOI: 10.3390/ijerph110101094
90. Vanhoutte I., De Mets L., De Boevre M., Uka V., Di Mavungu J.D., De Saeger S., De Gelder L., Audenaert K. Microbial detoxification of deoxynivalenol (DON), assessed via a Lemna minor l. bioassay, through biotransformation to 3‐epi‐don and 3‐epi‐dom‐1 // Toxins (Basel). 2017. V. 9. N2. DOI: 10.3390/toxins9020063
91. Mingmongkolchai S., Panbangred W. Bacillus probiotics: an alternative to antibiotics for livestock production // J. Аppl. Microbial. 2018. V. 124. P. 1334-1346. DOI: 10.1111/jam.13690
Review
For citations:
Sidorova T.M., Asaturova A.M., Allakhverdyan V.V. Specific features of antagonism of Bacillus bacteria against toxinogenic Fusarium fungi in protecting plants against disease and contamination with mycotoxins (review). South of Russia: ecology, development. 2021;16(4):86‐103. (In Russ.) https://doi.org/10.18470/1992-1098-2021-4-86-103