Preview

South of Russia: ecology, development

Advanced search

Cytotoxicity and antiviral activity of tellurium derivatives in cells infected with herpes simplex virus and cytomegalovirus in vitro

https://doi.org/10.18470/1992-1098-2021-3-108-118

Abstract

Aim. To carry out a comparative analysis of the cytotoxic and antiviral properties of synthesized tellurium derivatives in model cellular systems of infections caused by herpes simplex virus and cytomegalovirus.
Material and Methods. 4 organo‐tellurium compounds were studied using primary and continuous cell cultures in various infection schemes.
Results. For each biological model studied, different thresholds of cytotoxicity concentration (TCD50 acute CC50 and CD50 CC50) were identified. Tellurium derivatives with methoxyphenyl and ethoxyphenyl ethene exhibit virus‐neutralizing activity, preventing the penetration of herpes simplex virus virions into sensitive cells. HTI (SI selectivity index) for these compounds was 84 and 77, respectively.
Conclusion. The manifestation of the cytotoxic effect of all tellurium‐containing organic compounds for transplanted cells lies in a lower concentration than for primary cells. The data obtained in the analysis of antiviral activity showed that the derivatives have therapeutic properties against HSV infection in cell culture.

About the Authors

A. A. Adieva
Precaspian Institute of Biological Resources, Dagestan Federal Research Centre, Russian Academy of Sciences; Dagestan State University of National Economy
Russian Federation

Aina A. Adieva, Dr of Biological Sciences, Professor & Leading Researcher, Animal Ecology Laboratory

45 Gadzhiev St, Makhachkala, 367000
Теl. +79883005534



R. R. Klimova
Ivanovsky Institute of Virology, N.F. Gamaleya National Research Centre of Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Russian Federation

Regina R. Klimova

Moscow



G. M. Abakarov
Dagestan State Technical University
Russian Federation

Gasan M. Abakarov

Makhachkala



K. S. Bekshokov
Dagestan State University
Russian Federation

Kerim S. Bekshokov

Makhachkala



N. E. Fedorova
Ivanovsky Institute of Virology, N.F. Gamaleya National Research Centre of Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Russian Federation

Natal'ya E. Fedorova

Moscow



D. K. Omarova
Precaspian Institute of Biological Resources, Dagestan Federal Research Centre, Russian Academy of Sciences
Russian Federation

Dzhamilya K. Omarova

Makhachkala



A. A. Kushch
Ivanovsky Institute of Virology, N.F. Gamaleya National Research Centre of Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Russian Federation

Alla A. Kushch

Moscow



S. A. Dzhamalova
Dagestan State University of National Economy
Russian Federation

Svetlana A. Dzhamalova

Makhachkala



A. M. Khalimbekova
Dagestan State University of National Economy
Russian Federation

Aida M. Khalimbekova

Makhachkala



A. R. Guseynova
Omsk State Medical University
Russian Federation

Alina R. Guseynova

Omsk



References

1. Looker K.J., Johnston C., Welton N.J., James C., Vickerman P., Turner K.M‐E., Boily M.C., Gottlieb S.L. The global and regional burden of genital ulcer disease due to herpes simplex virus: a natural history modelling study. British Medical Journal Global Health, 2020, vol. 5, e001875. DOI: 10.1136/bmjgh‐2019‐001875

2. Lichtner M., Cicconi P., Vita S., Cozzi‐Lepri A., Galli M., Lo Caputo S., Saracino A., De Luca A., Moioli M., Maggiolo F., Marchetti G., Vullo V., d'Arminio Monforte A., et al. Cytomegalovirus coinfection is associated with an increased risk of severe non‐AIDS‐defining events in a large cohort of HIV‐infected patients. The Journal of Infectious Diseases, 2015, vol. 211, no. 2, pp. 178‐86. DOI: 10.1093/infdis/jiu417

3. Roizman B., Whitley R.J. An Inquiry into the Molecular Basis of HSV Latency and Reactivation. Annual Review of Microbiology, 2013, vol. 67, pp. 355‐374. DOI: 10.1146/annurev‐micro‐092412‐155654

4. Adieva A.A. Herpesvirus infections and perinatal pathology. Rossiiskii pediatricheskii zhurnal [Russian Pediatric Journal]. 2010, no. 1, pp. 39‐44. (In Russian)

5. Slyker J.A., Guthrie B., Pankau M., Tapia K., Wamalwa D., Benki‐Nugent S., Ngugi E., Huang M., Njuguna I., Langat A., John‐Stewart G., Lehman D. Cytomegalovirus and Epstein‐Barr virus viremia are associated with HIV DNA levels in the reservoir of Kenyan infants on antiretroviral therapy. The Journal of Infectious Diseases, 2020, vol. 223, iss. 11, pp. 1923‐1927. DOI: 10.1093/infdis/jiaa640

6. Koch M.S., Lawler S.E., Chiocca E.A. HSV‐1 Oncolytic Viruses from Bench to Bedside: An Overview of Current Clinical Trials. Cancers, 2020, vol. 12, iss. 12, article: 3514. DOI: 10.3390/cancers12123514

7. Klimova R.R., Malinovskaya V.V., Guseva T.S., Parshina O.V., Getiya E.G., Degtyareva M.V., et al. Influence of herpesvirus infections on the level of proinflammatory cytokines in premature infants. Voprosy virusologii [Virology issues]. 2011, no. 4, pp. 23‐26. (In Russian)

8. Zinser E., Krawczyk A., Stich L. Mühl‐Zürbes P., Aufderhorst U., Draßner C., Stich L., Zaja M., Strobl S., Steinkasserer A., Heilingloh C.S. A new promising candidate to overcome drug resistant herpes simplex virus Infections. Antiviral Research, 2018, vol. 149, pp. 202‐210. DOI: 10.1016/j.antiviral.2017.11.012

9. Jiang Y.C., Feng H., Lin Y.C., Guo X.R. New strategies against drug resistance to herpes simplex virus. International Journal of Oral Science, 2016, vol. 8, pp. 1‐6. DOI: 10.1038/ijos.2016.3

10. Vissani M.A., Thiry E., Pozzo F.D., Barrandeguy M. Antiviral agents against equid alphaherpesviruses: Current status and perspectives. The Veterinary Journal, 2016, vol. 207, pp. 38‐44. DOI: 10.1016/j.tvjl.2015.06.010

11. Albeck M., Tamari T., Sredni В. Synthesis and properties of ammonium trichloro(dioxyethylene‐O,O)tellurate (AS‐101). A new immunomodulating compound. Synthesis. 1989, no. 8, pp. 635‐636.

12. Vázquez‐Tato M. P., Mena‐Menéndez A., Feás X., Seijas J.A. Novel microwave‐assisted synthesis of the immunomodulator organotellurium compound ammonium trichloro(dioxoethylene‐O,O')tellurate (AS101). International Journal of Molecular Sciences, 2014, vol. 15, iss. 2, pp. 3287‐3298. DOI: 10.3390/ijms15023287

13. Chasteen T.G., Fuentes D.E., Tantaleán J.C., Vásquez C.C. Tellurite: history, oxidative stress, and molecular mechanisms of resistance. FEMS Microbiology Reviews, 2009, vol. 33, iss. 4, pp. 820‐832. DOI: 10.1111/j.1574-6976.2009.00177.x

14. Bienert G.P., Schussler M.D., Jahn T.P. Metalloids: essential, beneficial or toxic? Major intrinsic proteins sort it out. Trends in Biochemical Sciences, 2008, vol. 33, iss. 1, pp. 20‐26. DOI: 10.1016/j.tibs.2007.10.004

15. Kim Y.J., Lee D.H., Choi Y.S., Jeong J.H., Kwon S.H. Benzo[b]tellurophenes as a Potential Histone H3 Lysine 9 Demethylase (KDM4) Inhibitor. International Journal of Molecular Sciences, 2019, vol. 20, iss. 23, article: 5908. DOI: 10.3390/ijms20235908

16. Trindade C., Juchem A., Guecheva T.N., de Oliveira I.M., dos Santos Silveira P. et. al. Diphenyl Ditelluride: Redox-Modulating and Antiproliferative Properties. Oxidative Medicine and Cellular Longevity, 2019, vol. 2019, article: 2510936. DOI: 10.1155/2019/2510936


Review

For citations:


Adieva A.A., Klimova R.R., Abakarov G.M., Bekshokov K.S., Fedorova N.E., Omarova D.K., Kushch A.A., Dzhamalova S.A., Khalimbekova A.M., Guseynova A.R. Cytotoxicity and antiviral activity of tellurium derivatives in cells infected with herpes simplex virus and cytomegalovirus in vitro. South of Russia: ecology, development. 2021;16(3):108‐118. (In Russ.) https://doi.org/10.18470/1992-1098-2021-3-108-118

Views: 577


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1992-1098 (Print)
ISSN 2413-0958 (Online)