The influence of weather conditions on breeding dates of the common gull (Larus canus) in the south of Western Siberia
https://doi.org/10.18470/1992-1098-2021-3-8-18
Abstract
Aim. The purpose of this research was to find out what local weather factors influence the nesting timing of the common gull (Larus canus).
Material and Methods. The time of egg laying by the common gull was determined using data obtained during regular surveys over 8 years (1996‐1998, 2002‐2003, 2006‐2008) on the islands of Lake Bolshie Chany. Weather and climatic factors were assessed using open‐access databases.
Results. It was been established that the start of egg‐laying in the colony of the common gull is determined by wind strength, the number of rainy days, the associated atmospheric pressure during the second decade of April, and the air temperature – the transition date at which the average daily air temperature rose above 0°C. In years with unstable spring temperatures, a relationship was revealed between the air temperature and the intensity of egg laying by the common gulls by day. In years when temperatures rise evenly, precipitation and wind speed become the main factors.
Conclusion. We conclude that the egg‐laying dates of the common gull is influenced by weather variables during the whole nesting season and not predominantly by early season variables. We also show the importance of large‐scale climatic phenomena such as the EAWR in explaining variability in timing of the nesting of the common gull in Siberia. We suggest that future studies should focus on the effects of extremes in weather variables and global climatic phenomena.
Keywords
About the Authors
M. Yu. GaryushkinaRussian Federation
Maria Yu. Garyushkina, Junior Researcher, Bird Ecology Research Group
11 Frunze, Novosibirsk, 630091
Tel. +79059534597
A. K. Yurlov
Russian Federation
Alexander K. Yurlov
Novosibirsk
References
1. Pulido F., Berthold P. Microevolutionary response to climate change // Advances in Ecological Research. 2004. V. 35. P. 151‐183. DOI: 10.1016/S0065‐2504(04)35008‐7
2. Dunn P. Breeding dates and reproductive performance // Advances in Ecological Research. 2004. V. 35. P. 69‐87. DOI: 10.1016/S0065‐2504(04)35004‐X
3. Socolar J.B., Epanchin P.N., Beissinger S.R., Tingley M.W. Phenological shifts conserve thermal niches // Proceedings of the National Academy of Sciences. 2017. V. 114. Iss. 49. P. 12976‐12981. DOI: 10.1073/pnas.1705897114
4. Saalfeld S.T., McEwen D.C., Kesler D.C., Butler M.G., Cunningham J.A., Doll A.C., English W.B., Gerik D.E., Grond K., Herzog P., Hill B.L., Lagassé B.J., Lanctot R.B. Phenological mismatch in Arctic‐breeding shorebirds: Impact of snowmelt and unpredictable weather conditions on food availability and chick growth // Ecology and Evolution. 2019 V. 9. Iss. 11. P. 6693‐6707. DOI: 10.1002/ece3.5248
5. Van den Hoff J. Environmental constraints on the breeding phenology of giant Macronectes spp., with emphasis on southern giant petrels M. giganteus // Marine Ornithology. 2020. V. 48. N 3. P. 33‐40.
6. Halupka L., Czyż B., Macias Dominguez C.M. The effect of climate change on laying dates, clutch size and productivity of Eurasian Coots Fulica atra // International Journal of Biometeorology. 2020. V. 64. P. 1857‐1863. DOI: 10.1007/s00484‐020‐01972‐3
7. Gaston A.J., Gilchrist H.G., Mallory M, Smith P.A. Changes in seasonal events, peak food availability, and consequent breeding adjustment in a marine bird: a case of progressive mismatching // The Condor. 2009. V. 111. Iss. 1. P. 111‐119. DOI: 10.1525/cond.2009.080077
8. Jones L.R. The effect of photoperiod and temperature on the testicular growth in captive black‐billed magpies // The Condor. 1986. V. 88. Iss. 1. P. 91‐93. DOI: 10.2307/1367759
9. Schaper S.V., Dawson A., Sharp P.J., Gienapp P., Caro S.P., Visser M.E. Increasing Temperature, Not Mean Temperature, Is a Cue for Avian Timing of Reproduction // The American Naturalist. 2012. V. 179. Iss. 2. P. E55‐E69. DOI: 10.1086/663675
10. Meijer T., Nienaber U., Langer U., Trillmich F. Temperature and timing of egg‐laying of European Starlings // The Condor. 1999. V. 101. Iss. 1. P. 124‐132. DOI: 10.2307/1370453
11. Møller A.P., Fiedler W., Berthold P., eds. Effects of climate change on birds. Oxford University Press. 2010. 321 p.
12. Charmantier A., Gienapp P. Climate change and timing of avian breeding and migration: evolutionary versus plastic changes // Evolutionary Applications. 2014. V. 7. Iss. 1. P. 15‐28. DOI: 10.1111/eva.12126
13. Thackeray S.J., Henrys P.A., Hemming D., Bell J.R., Botham M.S., Burthe S., Helaouet P., Johns D.G., Jones I.D., Leech D.I., Mackay E.B., Massimino D., Atkinson S., Bacon P.J., Brereton T.M., Carvalho L., Clutton‐Brock T.H., Duck C., Edwards M., Elliott J.M., Hall S.J., Harrington R., PearceHiggins J.W., Høye T.T., Kruuk L.E., Pemberton J.M., Sparks T.H., Thompson P.M., White I., Winfield I.J., Wanless S. Phenological sensitivity to climate across taxa and trophic levels // Nature. 2016. V. 14. Iss. 535. P. 241‐245. DOI: 10.1038/nature18608
14. Praetorius S., Rugenstein M., Persad G., Caldeira K. Global and Arctic climate sensitivity enhanced by changes in North Pacific heat flux // Nature Communications. 2018. V. 9. Article number: 3124. DOI: 10.1038/s41467‐01805337‐8
15. Hällfors M.H., Antão L.H., Itter M., Lehikoinen A., Lindholm T., Roslin T., Saastamoinen M. Shifts in timing and duration of breeding for 73 boreal bird species over four decades // Proceedings of the National Academy of Sciences. 2020. V. 117. Iss. 31. P. 18557‐18565. DOI: 10.1073/pnas.1913579117
16. Kirtman S.B., Power S.B., Adedoyin A.J., Boer G.J., Bojariu R., Camilloni I., Doblas‐Reyes F.J., Fiore A.M., Kimoto M., Meehl G.A. Near‐term climate change: Projections and predictability // Intergovernmental Panel on Climate Change. Cambridge University Press. 2014. P. 953‐1028. DOI: 10.1017/CBO9781107415324.023
17. Both C., Artemyev A.V., Blaauw B., Cowie R.J., Dekhuijzen A.J., Eeva T., Enemar A., Gustafsson L., Ivankina E.V., Järvinen A., Metcalfe N.B., Nyholm N.E.I., Potti J., Ravussin P.‐A., Sanz J.J., Silverin B., Slater F.M., Sokolov L.V., Török J., Winkel W., Wright J., Zang H., Visser M.E. Large‐scale geographical variation confirms that climate change causes birds to lay earlier // Proceedings of the Royal Society B: Biological Sciences. 2004. V. 271. P. 1657-1662. DOI: 10.1098/rspb.2004.2770
18. Hammer Ø., Harper D.A.T., Ryan P. D. PAST: Paleontological Statistics Software Package for Education and Data Analysis // Palaeontologia Electronica. 2001. V. 4. N. 1. Art. 4. 9 p. URL: http://palaeo‐electronica.org/2001_1/past/issue1_01.htm. (дата обращения: 10.09.2020)
19. Brommer J.E., Rattiste K., Wilson A.J. Exploring plasticity in the wild: laying date‐temperature reaction norms in the common gull Larus canus // Proceedings of the Royal Society B: Biological Sciences. 2008. V. 275. Iss. 1635. P. 687‐693. DOI: 10.1098/rspb.2007.0951
20. Pakanen V.‐T. Large scale climate affects the timing of spring arrival but local weather determines the start of breeding in a northern Little Tern (Sternula albifrons) population // Ornis Fennica. 2018. V. 95. N. 4. P. 178‐184.
21. Kostin I.O. [Influence of climate on the state of the Taimyr population of the red‐breasted goose]. In: Voprosy okhotn. ornitologii [Hunting ornithology issues]. Moscow, 1986, pp. 81‐93. (In Russian)
22. Mikhantyev A.I., Selivanova M.A. The timing of breeding of the Mallard (Anas platyrhynchos) in Northern Kulunda and their dependence from environmental factors. Sibirskiy ekologicheskiy zhurnal [Siberian Journal of Ecology]. 1996, no. 3, pp. 285‐293. (In Russian)
23. Mikhantyev A.I., Selivanova M.A. Ecological bases for the prediction of the productivity and abundance of breeding ducks. Kazarka [Casarca]. 2009, vol. 12, iss. 1, pp. 47‐67. (In Russian)
24. Alves J.A., Gunnarsson T.G., Sutherland W.J., Potts P.M., Gill J.A. Linking warming effects on phenology, demography, and range expansion in a migratory bird population // Ecology and Evolution. 2019 V. 9. Iss. 5. P. 2365‐2375. DOI: 10.1002/ece3.4746
25. Gaston A.J., Gilchrist H.G., Mallory M.L. Variation in ice conditions has strong effects on the breeding of marine birds at Prince Leopold Island, Nunavut // Ecography. 2005. V. 28. Iss. 3. P. 331‐344. DOI: 10.1111/j.09067590.2005.04179.x
26. Bêty J., Gauthier G., Giroux J.‐F. Body condition, migration, and timing of reproduction in snow geese: a test of the condition dependent model of optimal clutch‐size // The American Naturalist. 2003. V. 162. Iss. 1. P. 110‐121. DOI: 10.1086/375680
27. Reed E.T., Gauthier G., Giroux J.‐F. Effects of spring conditions on breeding propensity of Greater Snow Goose females // Animal Biodiversity and Conservation. 2004. V. 27. Iss. 1. P. 35‐46.
28. Reséndiz‐Infante C., Gauthier G., Souchay G. Consequences of a changing environment on the breeding phenology and reproductive success components in a long‐distance migratory bird // Population Ecology. 2020. V. 62. Iss. 2. P. 284‐296. DOI: 10.1002/1438‐390X.12046
29. Onno S. Nesting time of waterfowl and coastal birds in the Matsalu nature reserve (Estonian SSR). Soobshchenie Pribaltiiskoi komissii po izucheniyu migratsii ptits [Report of the Baltic Commission for the Study of Bird Migration]. Tartu, 1975, vol. 8, pp. 107‐155. (In Russian)
30. Arzel C., Dessborn L., Pöysä H., Elmberg J., Nummi P., Sjöberg K. Early springs and breeding performance in two sympatric duck species with different migration strategies // Ibis. 2014. V. 156. Iss. 2. P. 288‐298. DOI: 10.1111/ibi.12134
31. Avilova K. The life cycle and numbers dynamics of the urban mallard population (Anas platyrhynchos, anseriformes, aves) in Moscow. Zoologicheskiĭ zhurnal, 2016, vol. 95, no. 12, pp. 1427‐1440. DOI: 10.7868/S0044513416120059 (In Russian)
32. Meltofte H., Piersma T., Boyd H., McCaffery B., Ganter B., Golovnyuk V.V., Graham K., Gratto‐Trevor C.L., Morrison R.I.G., Nol E., Rösner H.‐U., Schamel D., Schekkerman H., Soloviev M.Y., Tomkovich P.S., Tracy D.M., Tulp I., Wennerberg L. Effects of climate variation on the breeding ecology of Arctic shorebirds. Meddelelser om Grønland Bioscience. V. 59. Copenhagen, Danish Polar Center, 2007. 49 p.
33. Stenseth N.Chr., Ottersen G., Hurrell J.W., Mysterud A., Lima M., Chan K.‐S., Yoccoz N.G., Ådlandsvik B. Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Niño Southern Oscillation and beyond // Proceedings of the Royal Society B: Biological Sciences. 2003. V. 270. Iss. 1529. P. 20872096. DOI: 10.1098/rspb.2003.2415
34. Fife D.T., Davis S.E., Robertson G.J., Gilchrist H., Stenhouse I., Shutler D., Mallory M. Correlating tropical climate with survival of an Arctic‐breeding, trans‐equatorial migrant seabird // Arctic Science. 2018. V. 4. Iss. 4. P. 656‐668. DOI: 10.1139/as‐2017‐0018
35. Price C., Hartmann K., Emery, T., Woehler E., McMahon C.R. Hindell M.A. Climate variability and breeding parameters of a trans‐hemispheric migratory seabird over seven decades // Marine Ecology Progress Series. 2020. V. 642. P. 191‐205. DOI: 10.3354/meps13328
36. Szostek K.L., Bouwhuis S., Becker P.H. Are arrival date and body mass after spring migration influenced by large scale environmental factors in a migratory seabird? // Front. Ecol. Evol. V. 3. Article 42. DOI: 10.3389/fevo.2015.00042
37. Dobson F.S., Becker P.H., Arnaud C.M., Bouwhuis A.C. Plasticity results in delayed breeding in a long‐distant migrant seabird // Ecology and Evolution. V. 7. Iss. 9. P. 3100‐3109. DOI: 10.1002/ece3.2777
Review
For citations:
Garyushkina M.Yu., Yurlov A.K. The influence of weather conditions on breeding dates of the common gull (Larus canus) in the south of Western Siberia. South of Russia: ecology, development. 2021;16(3):8‐18. (In Russ.) https://doi.org/10.18470/1992-1098-2021-3-8-18