Preview

South of Russia: ecology, development

Advanced search

Biodiagnostics of stability of soils of southern Russia to silver pollution

https://doi.org/10.18470/1992-1098-2021-1-61-75

Abstract

Aim. To assess the resistance of soils in the south of Russia to silver pollution using biological indicators.

Methods. The contamination of soils in southern Russia (ordinary chernozem, grey sandy and brown forest soils) was simulated with silver under laboratory conditions. Soils were contaminated with water‐soluble silver nitrate in order to reveal the maximum ecotoxicity of silver. Soil stability was assessed according to the most sensitive and informative biological parameters in dynamics of 10, 30 and 90 days after pollution.

Results. Silver contamination inhibits the activity of oxidoreductases (catalase and dehydrogenases), reduces the total number of bacteria and the growth and development of radish. For all soils, a direct relationship was noted between silver concentration and the degree of deterioration of soil properties. The toxic effect of silver was most pronounced on the 30th day after contamination. According to their resistance to silver pollution, the soils investigated form the following sequence: ordinary chernozem> grey sandy soil ≥ brown forest soil.

Conclusion. The light granulometric composition of grey sandy soils and the acidic reaction of the environment of brown forest soils, as well as the low organic matter content, contribute to the high mobility and high ecotoxicity of silver in these soils. Regional maximum permissible concentrations (MPCs) of silver content in ordinary chernozems, grey sandy and brown forest soils have been determined as ‐ 4.4, 0.9 and 0.8 mg/kg, respectively. 

About the Authors

S. I. Kolesnikov
Southern Federal University
Russian Federation

Sergey I. Kolesnikov.

Rostov‐on‐Don.


Competing Interests:

Тhe authors declare no conflict of interest. 



N. I. Tsepina
Southern Federal University
Russian Federation

Natalia I. Tsepina, Candidate of Biological Sciences, junior researcher, Ecology and Nature Management Scientific‐Educational Centre, D.I. Ivanovsky Academy of Biology and Biotechnology.

194/1 Stachki Ave., Rostov‐on‐Don, Russia 344090.

Tel. +79061828021 


Competing Interests:

Тhe authors declare no conflict of interest. 



Т. V. Minnikova
Southern Federal University
Russian Federation

Tatyana V. Minnikova.

Rostov‐on‐Don.


Competing Interests:

Тhe authors declare no conflict of interest. 



L. V. Sudina
Southern Federal University
Russian Federation

Lyudmila V. Sudina.

Rostov‐on‐Don.


Competing Interests:

Тhe authors declare no conflict of interest. 



К. Sh. Kazeev
Southern Federal University
Russian Federation

Kamil Sh. Kazeev.

Rostov‐on‐Don.


Competing Interests:

Тhe authors declare no conflict of interest. 



References

1. Oves M., Khan M.S., Zaidi A., Ahmad E. Soil contamination, nutritive value, and human health risk assessment of heavy metals: an overview. In: Zaidi A., Wani P., Khan M. (eds) Toxicity of Heavy Metals to Legumes and Bioremediation, Springer, Vienna. https://doi.org/10.1007/978‐3‐7091‐0730‐0_1

2. Vetrova A.A., Zabelin V.A., Ivanova A.A., Adamenko L.A., Delegan Ya.A., Petrikov K.V. Oil biodegradation by consortium of oil degrading microorganisms in laboratory model systems. South of Russia: ecology, development, 2018, vol. 13, no. 1, pp. 184‐198. (In Russian) DOI: 10.18470/1992‐1098‐2018‐1‐184‐198

3. Vodyanitskii Yu.N. The evaluation of total toxicological contamination of soils with heavy metals and metalloids. Agrokhimiya [Agrochemistry]. 2017, no. 2, pp. 56‐63. (In Russian)

4. Vodyanitskii Yu.N., Shoba S.A. Biogeochemical barriers for soil and groundwater bioremediation. [Moscow University Herald. Series 17: Soil Science]. 2016, no. 3, pp. 3‐15. (In Russian)

5. Vodyanitskii Y.N., Yakovlev A.S. Contamination of soils and groundwater with new organic micropollutants: a review. Soil Science, 2016, no. 5, pp. 609‐619. (In Russian) DOI: 10.7868/S0032180X16050154

6. Daoud R.M., Kolesnikov S.I., Kuzina A.A., Kazeev K.Sh., Akimenko Yu.V. Development of regional maximum permissible concentrations of oil in the soils of arid ecosystems in the south of Russia. Ecology and Industry of Russia, 2019, vol. 23, no. 9, pp. 66‐70. (In Russian) DOI: 10.18412/1816‐0395‐2019‐09‐66‐70

7. Kolesnikov S.I., Timoshenko A.N., Kazeev K.Sh., Akimenko Yu.V., Myasnikova M.A. Ecotoxicity of copper, nickel, and zinc nanoparticles assessment on the basis of biological indicators of chernozems. Soil Science, 2019, no. 8, pp. 986‐992. (In Russian) DOI: 10.1134/S0032180X19080094

8. Sukiasyan A.R. New approach to determining the environmental risk factor by the biogeochemical coefficients of heavy metals. South of Russia: ecology, development, 2018, vol. 13, no. 4, pp. 108‐118. (In Russian) DOI: 10.18470/1992‐1098‐2018‐4‐108‐118

9. Minnikova T.V., Kolesnikov S.I., Denisova T.V. Effect of nitrogen and humic fertilizers on the biochemical state of oil‐contaminated chernozem. South of Russia: ecology, development, 2019, vol. 14, no. 2, pp. 189‐201. (In Russian) DOI: 10.18470/1992‐1098‐2019‐2‐189‐201

10. Kolesnikov S.I., Varduny T.V., Lysenko V.S., Kapralova O.A., Chokheli V.A., Sereda M.M., Dmitriev P.A., Varduny V.M. Effect of nano and crystalline metal oxides on growth, gene and cytotoxicity of plants in vitro and ex vitro. Turczaninowia, 2018, vol. 21, no. 4, pp. 207‐214. DOI : 10.14258/turczaninowia.21.4.21

11. Minnikova T.V., Denisova T.V., Mandzhieva S.S., Kolesnikov S.I., Minkina T.M., Chaplygin V.A., Burachevskaya M.V., Sushkova S.N., Bauer T.V. Assessing the effect of heavy metals from the Novocherkassk power station emissions on the biological activity of soils in the adjacent areas. Journal of Geochemical Exploration, 2017, vol. 174, pp. 70‐78. DOI: 10.1016/j.gexplo.2016.06.007

12. Krylov D.A. Negativnoe vozdeistvie mikroelementov, soderzhashchikhsya v uglyakh, v zoloshlakovykh otvalakh i v zole‐unose ugol'nykh TES, na okruzhayushchuyu sredu i zdorov'e lyudei [The negative impact of trace elements contained in coal, in ash and slag dumps and in fly ash of coal TPPs, on the environment and human health]. Moscow, 2012, 37 p. (In Russian)

13. Pashkevich M.A., Alekseenko A.V. Monitoring of soil pollution in the area of JSC “Novoroscement” impact. Gornyi informatsionno‐analiticheskii byulleten' (nauchno‐tekhnicheskii zhurnal)[Mining Information and Analytical Bulletin (scientific and technical journal)]. 2015, no. 10, pp.369‐375. (In Russian)

14. Shcherbakova E.V. Ekologicheskoe sostoyanie pochv i tekhnogennyh gruntov svalki goroda Slavyanska‐na‐Kubani [Ecological condition of soils and industrial soils in the landfill of the city of Slavyansk‐on‐Kuban]. In: Ekologicheskie problemy promyshlennyh gorodov[Environmental problems of industrial cities]. Saratov, 2013, pp. 106‐107. (In Russian)

15. Michels C., Perazzoli S., Soares H.M. Inhibition of the enriched culture of ammonium‐oxidizing bacteria by two different nanoparticles: silver and magnetite. Common environment science, 2017, vol. 586, pp. 995‐1002. DOI: 10.1016/j.scitotenv.2017.02.080

16. Kizil’shtein L.Ya., Levchenko S.V. Impurity elements and environmental problems of coal power engineering. Thermal Engineering, 2003, no. 12, pp. 14‐19. (In Russian)

17. Xing G., Zhu J., Xiong Z. Ag, Ta, Ru, and Ir enrichment in surface soil: Evidence for land pollution of heavy metal from atmospheric deposition. Global Biogeochemical Cycles, 2004, vol. 18, iss. 1, pp. 1‐5. DOI: 10.1029/2003GB002123

18. Kasimov N.S., Vlasov D.V. Technophilicity of chemical elements in the beginning of the 21st century. Vestnik Moskovskogo Universiteta. Seria 5, Geografia [Moscow University Bulletin. Series 5, Geography]. 2012, no. 1, pp. 15‐22. (In Russian)

19. Aueviriyavit S., Phummiratch D., Maniratanachote R. Mechanistic study on the biological effects of silver and gold nanoparticles in CaCO‐2 cells – induction of the Nrf2/HO‐1 pathway by high concentrations of silver nanoparticles. Toxicology Letters, 2014, vol. 224, iss. 1, pp. 73‐83. DOI: 10.1016/j.toxlet.2013.09.020

20. Benn T., Cavanagh B., Histovski K., Posner J.D., Westerhoff P. The release of nanosilver from consumer products used in the home. Journal of Environmental Quality, 2010, vol. 39, iss. 6, pp. 1875‐1882. DOI: 10.2134/jeq2009.0363

21. Kabata‐Pendias A., Trace Elements in Soils and Plants. 4th Edition. Boca Raton, FL, Crc Pressрр, 2010, 548 p.

22. Jones K.C., Davies B.E., Peterson P.J. Silver in Welsh soils: Physical and chemical distribution studies. Geoderma, 1986, vol. 37, iss. 2, pp. 157‐174. DOI: 10.1016/0016‐7061(86)90028‐5

23. Puzanov A.V., Baboshkina S.V., Alekseev I.A., Saltykov A.V. Accumulation and distribution of heavy metals and arsenic in the "garden soil‐vegetable crops" systems near the vostochny cosmodrome (Zeya river basin, Amurskaya oblast). Agrokhimiya [Agrochemistry]. 2015, no. 2, pp. 86‐96. (In Russian)

24. Yildirim D., Sasmaz A. Phytoremediation of As, Ag, and Pb in contaminated soils using terrestrial plants grown on Gumuskoy mining area (Kutahya Turkey). Journal of Geochemical Exploration, 2017, vol. 182, part B, pp. 228‐234. DOI: 10.1016/j.gexplo.2016.11.005

25. Druzhinin A.V., Karelina E.V. The basic types of industrial deposits of silver. Vestnik RUDN: Seriya inzhenernyye issledovaniya [The RUDN Vestnik: A series of engineering studies]. 2008, no. 1, pp. 35‐41. (In Russian)

26. Gomathi M., Rajkumar P.V., Prakasam A., Ravichandran K. Green synthesis of silver nanoparticles using Datura stramonium leaf extract and assessment of their antibacterial activity. Resource‐Efficient Technologies, 2017, vol. 3, iss. 3, pp. 280‐284. DOI: 10.1016/j.reffit.2016.12.005

27. Liu W., Zeng Z., Chen A., Zeng G., Xiao R., Guo Zh., Yi F., Huang Zh., He K., Hu L. Toxicity effects of silver nanoparticles on the freshwater bivalve Corbicula fluminea. Journal of Environmental Chemical Engineering, 2018, vol. 6, iss. 4, pp. 4236‐4244. DOI: 10.1016/j.jece.2018.06.032

28. Reidy B., Haase A., Luch A., Dawson K.A., Lynch I. Mechanisms for the isolation, transformation and toxicity of silver nanoparticles: a critical review of current knowledge and recommendations for future research and applications. Materials (Basel), 2013, vol. 6, iss. 6, pp. 2295‐2350. DOI: 10.3390/ma6062295

29. Sayeda A.E.H., Solimanb H.A.M. Developmental toxicity and DNA damaging properties of silver nanoparticles in the catfish (Clarias gariepinus). Mutation Research Genetic Toxicology and Environmental Mutagenesis, 2017, vol. 822, pp. 34‐40. DOI: 10.1016/j.mrgentox.2017.07.002

30. Sharma V.K., Siskova K.M., Zboril R., Gardea‐Torresdey J.L. Organic‐coated silver nanoparticles in biological and environmental conditions: Fate, stability and toxicity. Advances in Colloid and Interface Science, 2014, vol. 204, pp. 15‐34. DOI: 10.1016/j.cis.2013.12.002

31. Sun C.,Yin N., Wen R., Liu W., Jia Y., Hua L., Zhou Q., Jiang G. Silver nanoparticles induced neurotoxicity through oxidative stress in rat cerebral astrocytes is distinct from the effects of silver ions. NeuroToxicology, 2016, vol. 52, pp. 210‐221. DOI: 10.1016/j.neuro.2015.09.007

32. Vig K., Megharaj M., Sethunathan N., Naidu R. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Advances Environmental Research, 2003, vol. 8, iss. 1, pp. 121‐135. DOI: 10.1016/S1093‐0191(02)00135‐1

33. Benini S., Cianci M., Mazzei L., Ciurli S. Fluoride inhibition of Sporosarcina pasteurii urease: structure and thermodynamics. Journal Biological Inorganic Chemistry, 2014, no. 19, pp. 1243‐1261. DOI: 10.1007/s00775‐014‐1182‐x

34. Kaya E.D., Söyüt H., Beydemir S. The toxicological impacts of some heavy metals on carbonic anhydrase from gilthead sea bream (Sparus aurata) gills. Environmental Toxicology and Pharmacology, 2015, vol. 39, iss. 2, pp. 825‐832. DOI: 10.1016/j.etap.2015.01.021

35. Liu Y., Zeng G., Zhong H., Wang Z., Liu Z., Cheng M., Liu G., Yang X., Liu S. Effect of rhamnolipid solubilization on hexadecane bioavailability: enhancement or reduction? Journal Hazardous Materials, 2017, vol. 322, part B, pp. 394‐401. DOI: 10.1016/j.jhazmat.2016.10.025

36. Kaczynski P., Lozowicka B., Hrynko I., Wolejko E. Behaviour of mesotrione in maize and soil system and its influence on soil dehydrogenase activity. Science Total Environmental, 2016, vol. 571, pp. 1079‐1088. DOI: 10.1016/j.scitotenv.2016.07.100

37. Stepniewska Z., Wolińska A., Ziomek J. Response of soil catalase activity to chromium contamination. Journal of Environmental Sciences, 2009, vol 21, iss. 8, pp. 1142‐1147. DOI: 10.1016/S1001‐0742(08)62394‐3

38. Bowen H.J.M. Environmental Chemistry of the Elements, Academic Press, New York, 1979, 333 p.

39. Alekseenko V.A., Alekseenko A.V. Khimicheskie elementy v geokhimicheskikh sistemakh. Klarki pochv selitebnykh landshaftov [Chemical elements in geochemical systems. Clarks of soils of residential landscapes]. Rostov‐on‐Don, Southern Federal University Publ., 2013, 380 p. (In Russian)

40. Eivazi F., Afrasiabi Z., Jose E. Effects of Silver Nanoparticles on the Activities of Soil Enzymes Involved in Carbon and Nutrient Cycling. Pedosphere, 2018, vol. 28, iss. 2, pp. 209‐214. DOI: 10.1016/S1002‐0160(18)60019‐0

41. Girilal M., Krishnakumar V., Poornima P., Fayazd M.A., Kalaichelvan P.T.A comparative study on biologically and chemically synthesized silver nanoparticles induced Heat Shock Proteins on fresh water fish Oreochromis niloticus. Chemosphere, 2015, vol. 139, pp. 461‐468. DOI: 10.1016/j.chemosphere.2015.08.005

42. Smith I, Carson B. Trace metals in the environment. Silver. Ann Arbor, MI, Ann Arbor Science Publishers, 1977, vol. 2, 469 p.

43. Cvjetko P., Milošić A., Domijan A‐M., Vinković Vrček I., Tolić S., Peharec Štefanić P., Letofsky‐Papst I., Tkalec M., Balen B. Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicology and Environmental Safety, 2017, vol. 137, pp. 8‐28. DOI: 10.1016/j.ecoenv.2016.11.009.

44. Tripathi A., Liu S., Kumar S.P., Kumar N., Chandra P.A., Tripathi D.K., Chauhan K. D., Sahi Sh. Differential phytotoxic responses of silver nitrate (AgNO3) and silver nanoparticle (AgNps) in Cucumis sativus L. Plant genetic resources, 2017, vol. 11, part B, pp. 255‐264. DOI: 10.1016/j.plgene.2017.07.005

45. Yasur J., Rani P.U. Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology. Environmental Science and Pollution Research, 2013, vol. 20, iss. 12, pp. 8636‐8648. DOI: 10.1007/s11356‐013‐1798‐3

46. Kolesnikov S.I., Kazeev K.S., Akimenko Yu.V. Development of regional standards for pollutants in the soil using biological parameters. Environmental Monitoring and Assessment, 2019, no. 191, pp. 544. DOI: 10.1007/s10661‐019‐7718‐3

47. Kolesnikov S.I., Kazeev K.Sh., Val’kov V.F., Ponomareva S.V. Ranking of Chemical Elements According to Their Ecological Hazard for Soil. Russian Agricultural Sciences, 2010, vol. 36, no. 1, pp. 32‐34. DOI: 10.3103/S1068367410010106

48. Kolesnikov S.I., Kazeev K.Sh., Val’kov V.F. Effects of Heavy Metal Pollution on the Ecological and Biological Characteristics of Common Chernozem. Russian Journal of Ecology. 2000, vol. 31, no. 3, pp. 174‐181. DOI: 10.1007/BF02762817

49. Kazeev K.Sh., Kolesnikov S.I., Akimenko Yu.V., Dadenko E.V. Metody biodiagnostiki nazemnykh ekosistem [Methods of biodiagnostics of terrestrial ecosystems]. Rostov‐on‐Don, SFU Publ., 2016, 356 p. (In Russian)

50. Minnikova T.V., Sushkova S.N., Mandzhieva S.S., Minkina T.M., Kolesnikov S.I. Assessment of the effect of benz (a) pyrene on the biological activity of chernozem in the Rostov region. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov [News of Tomsk Polytechnic University. Geo‐Resource Engineering]. 2019, vol. 330, no. 12, pp. 91‐102. (In Russian)DOI: 10.18799/24131830/2019/12/2396

51. Chen J., He F., Zhang X., Sun X., Zheng J., Zheng J. Heavy metal pollution decreases microbial abundance, diversity and activity within particle‐size fractions of a paddy soil. FEMS Microbiology Ecology, 2014, vol. 87, iss. 1, pp. 164‐181. DOI: 10.1111/1574‐6941.12212

52. Yang J.S., Yang F.L., Yang Y., Xing G.L., Deng C.P., Shen Y.T., Luo L.Q., Li B.Z., Yuan, H.L. A proposal of “core enzyme” bioindicator in long‐term Pb‐Zn ore pollution areas based on topsoil property analysis. Environmental Pollution, 2016, vol. 213, pp. 760‐769. DOI: 10.1016/j.envpol.2016.03.030

53. Iram F., Iqbal M.S., Athar M.M., Saeed M.Z., Yasmeen A., Ahmad R. Glucoxylan‐mediated green synthesis of gold and silver nanoparticles and their phyto‐toxicity study. Carbohydrate Polymers, 2014, vol. 104, no. 1, pp. 29‐33. DOI: 10.1016/j.carbpol.2014.01.002

54. Langdon K.A., McLaughlin M.J., Kirby J.K., Merrington G. The effect of soil properties on the toxicity of silver to the soil nitrification process. Environmental and Toxicology Chemistry, 2014, vol. 33, iss. 5, pp. 1170‐1178. DOI: 10.1002/etc.2543

55. Rahmatpour S., Shirvani M., Mosaddeghi M.R., Farshid N., Bazarganipour M. Dose‐response effects of silver nanoparticles and silver nitrate on microbial and enzyme activities in calcareous soils. Geoderma, 2017, vol. 285, pp. 313‐322. DOI: 10.1016/j.geoderma.2016.10.006

56. Salama H.M.H. Effects of silver nanoparticles in some crop plants, Common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Journal Biotechnology, 2012, vol. 3, no. 10, pp. 190‐197. Available at: http://www.interesjournals.org/IRJOB (accessed 10.09.2019)

57. Kolesnikov S.I., Evreinova A.V., Kazeev K.Sh., Val’kov V.F. Changes in the Ecological and Biological Properties of Ordinary Chernozems Polluted by Heavy Metals of the Second Hazard Class (Mo, Co, Cr, and Ni). Eurasian Soil Science, 2009, vol. 42, no. 8, pp. 936‐942. DOI: 10.1134/S1064229309080122

58. Kolesnikov S.I., Popovich A.A., Kazeev K.Sh., Val’kov V.F. The Influence of Fluorine, Boron, Selenium, and Arsenic Pollution on the Biological Properties of Ordinary Chernozems. Eurasian Soil Science, 2008, vol. 41, no. 4, pp. 400‐404. DOI: 10.1134/S1064229308040066

59. Dobrovolsky G.V., Nikitin E.D. Ekologiya pochv. Uchenie ob ekologicheskikh funktsiyakh pochv [Ecology of soils. Teaching about the ecological functions of soils]. Moscow, Nauka Publ., 2006, 362 p. (In Russian)

60. Tsepina N.I. Vliyanie zagryazneniya serebrom na biologicheskie svoistva pochv Yuga Rossii: avtoreferat dissertatsii na soiskanie uchenoi stepeni kandidata biologicheskikh nauk [The influence of silver pollution on the biological properties of soils in the South of Russia: dissertation abstract for the degree of candidate of biological sciences]. 21 p. (In Russian)


Review

For citations:


Kolesnikov S.I., Tsepina N.I., Minnikova Т.V., Sudina L.V., Kazeev К.Sh. Biodiagnostics of stability of soils of southern Russia to silver pollution. South of Russia: ecology, development. 2021;16(1):61-75. (In Russ.) https://doi.org/10.18470/1992-1098-2021-1-61-75

Views: 680


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1992-1098 (Print)
ISSN 2413-0958 (Online)