Preview

South of Russia: ecology, development

Advanced search

Biodiversity and epidemic potential of Chiropteran coronaviruses (Nidovirales: Coronaviridae)

https://doi.org/10.18470/1992-1098-2020-2-17-34

Abstract

AimThe aim of this review is a comprehensive analysis of current literature data on coronaviruses identified in bats.
DiscussionCoronaviruses (Coronaviridae) constitute the most extensive family of viruses of the order Nidovirales. Coronaviruses have a wide range of hosts, including mammals (Alphacoronavirus, Betacoronavirus, Deltacoronavirus, Gammacoronavirus) and birds (Deltacoronavirus, Gammacoronavirus), amphibians (Alphaletovirus) and are pathogens of respiratory, intestinal, cardiovascular. Until the beginning of this century, only etiological agents of mild and moderate respiratory diseases were known among pathogenic coronaviruses for humans. In the 21st century, new highly pathogenic coronaviruses were discovered that caused outbreaks of severe pneumonia with high mortality: the severe acute respiratory syndrome coronavirus (Severe acute respiratory syndromerelated coronavirus, SARSCoV; 20022003, southern provinces of China), the Middle East respiratory coronavirus Syndrome (Middle East respiratory syndromerelated coronavirus, MERSCoV; 2012, western part of Saudi Arabia) and type 2 acute respiratory syndrome coronavirus (Severe acute respiratory syndromerelated coronavirus 2, SARSCoV2; 2019 ..., the eastern part of central China). The natural reservoirs of SARSCoV, SARSCoV2 and MERSCoV are bats (Chiroptera). Coronaviruses circulating in bat populations are not only phylogenetically close to the currently known especially dangerous human viruses but probably have epidemic potential that can be realized in the future.
ConclusionThis review presents current data on coronaviruses of bats: taxonomic status, spectrum of potential hosts, distribution. The ecological features of coronaviruses of bats are considered in the context of their epidemiological significance. The origin of pathogenic human coronaviruses is discussed.

About the Authors

A. M. Shestopalov
Federal Research Center of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences; Dagestan State University
Russian Federation

Alexander M. Shestopalov, Doctor of Sciences in Biology, Professor, Head of the Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Head of the Eurasian Center for Zoonotic Infections

2 Timakova St., Novosibirsk, 630060
Tel. +79059326476 



Yu. V. Kononova
Federal Research Center of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
Russian Federation

Yulia V. Kononova

Novosibirsk



A. A. Gadzhiev
Dagestan State University
Russian Federation

Alimurad A. Gadzhiev

Makhachkala



M. A. Gulyaeva
Novosibirsk State University
Russian Federation

Marina A. Gulyaeva

Novosibirsk



Marandi Mehdi Vasfi
Tehran University
Islamic Republic of Iran
Tehran


A. Yu. Alekseev
Federal Research Center of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Alexander Yu. Alekseev

Novosibirsk



J. M. Jamalutdinov
Dagestan State University
Russian Federation

Jalalutdin M. Jamalutdinov

Makhachkala



M. Yu. Shchelkanov
Federal Scientific Center of the Eastern Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences; National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences; Far Eastern Federal University
Russian Federation

Mikhail Yu. Shchelkanov

Vladivostok



References

1. Virus Taxonomy: 2019 Release. EC 51, Berlin, Germany, July 2019. Available at: https://talk.ictvonline.org/taxonomy/ (accessed 16.06.2020)

2. Masters P.S. The molecular biology of coronaviruses. Adv Virus Res., 2006, vol. 66, pp. 193-292. DOI: 10.1016/S0065-3527(06)66005-3

3. Liu D.X., Fung T.S., Chong K.K., Shukla A., Hilgenfeld R. Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res., 2014, vol. 109, pp. 97-109. DOI: 10.1016/j.antiviral.2014.06.013

4. Huang C., Liu W.J., Xu W., Jin T., Zhao Y., Song J., Shi Y., Ji W., Jia H., Zhou Y., Wen H., Zhao H., Liu H., Li H., Wang Q., Wu Y., Wang L., Liu D., Liu G., Yu H., Holmes E.C., Lu L., Gao G.F. A Bat-Derived Putative Cross-Family Recombinant Coronavirus with a Reovirus Gene. PLoS Pathog, 2016, vol. 12, no. 9: e1005883. DOI: 10.1371/journal.ppat.1005883

5. de Haan C.A., Haijema B.J., Masters P.S., Rottier P.J. Manipulation of the coronavirus genome using targeted RNA recombination with interspecies chimeric coronaviruses. Methods Mol Biol., 2008, vol. 454, pp. 229-236. DOI: 10.1007/978-1-59745-181-9_17

6. Wong A.C.P., Li X., Lau S.K.P., Woo P.C.Y. Global Epidemiology of Bat Coronaviruses. Viruses, 2019, vol. 11, no. 2, pii: E174. DOI: 10.3390/v11020174

7. Taxonomy Browser. Coronaviridae. Available at: https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=11118 (accessed 16.06.2020)

8. Cui J., Li F., Shi Z. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol., 2019, vol. 17, no. 3, pp. 181-192. DOI: 10.1038/s41579-018-0118-9

9. Wu Z., Yang L., Ren X., He G., Zhang J., Yang J., Qian Z., Dong J., Sun L., Zhu Y., Du J., Yang F., Zhang S., Jin Q. Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases. ISME J., 2016, vol. 10, no. 3, pp. 609-620. DOI: 10.1038/ismej.2015.138

10. Banerjee A., Kulcsar K., Misra V., Frieman M., Mossman K. Bats and Coronaviruses. Viruses, 2019, vol. 11, no. 1, pii: E41. DOI: 10.3390/v11010041

11. Shchelkanov M.Yu., Kolobukhina L.V., Lvov D.K. [Human coronaviruses (Nidovirales, Coronaviridae): increased level of epidemic threat]. Lechashchii vrach, 2013, vol. 10, pp. 49-54. (In Russian) Available at: www.lvrach.ru/2013/10/15435832/ (accessed 15.04.2020)

12. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R., Zhu Y., Li B., Huang C.L., Chen H.D., Chen J., Luo Y., Guo H., Jiang R.D., Liu M.Q., Chen Y., Shen X.R., Wang X., Zheng X.S., Zhao K., Chen Q.J., Deng F., Liu L.L., Yan B., Zhan F.X., Wang Y.Y., Xiao G.F., Shi Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, vol. 579, no. 7798, pp. 270-273. DOI: 10.1038/s41586-020-2012-7

13. World Health Organization. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003 (based on data as of the 31 December 2003). Available at: https://www.who.int/csr/sars/country/table2004_04_21/en/ (accessed 16.06.2020)

14. World Health Organization. MERS situation update, January 2020. Available at: http://www.emro.who.int/health-topics/mers-cov/mersoutbreaks.html (accessed 16.06.2020)

15. World Health Organization. Coronavirus disease (COVID-19) Situation Report – 169 URL: https://www.who.int/docs/defaultsource/coronaviruse/situation-reports/20200707-covid19-sitrep-169.pdf?sfvrsn=c6c69c88_2 (accessed 08.07.2020)

16. Chen L., Liu B., Yang J., Jin Q. DBatVir: The database of bat-associated viruses. Database (Oxford), 2014, vol. 2014, bau021. DOI: 10.1093/database/bau021

17. Leopardi S., Holmes E.C., Gastaldelli M., Tassoni L., Priori P., Scaravelli D., Zamperin G., De Benedictis P. Interplay between co-divergence and cross-species transmission in the evolutionary history of bat coronaviruses. Infect Genet Evol., 2018, vol. 58, pp. 279-289. DOI: 10.1016/j.meegid.2018.01.012

18. Li W., Shi Z., Yu M., Ren W., Smith C., Epstein J.H., Wang H., Crameri G., Hu Z., Zhang H., Zhang J., McEachern J., Field H., Daszak P., Eaton B.T., Zhang S., Wang L.F. Bats are natural reservoirs of SARS-like coronaviruses. Science, 2005, vol. 310, iss. 5748, pp. 676-679. DOI: 10.1126/science.1118391

19. Yu P., Hu B., Shi Z.L., Cui J. Geographical structure of bat SARS-related coronaviruses. Infect Genet Evol., 2019, vol. 69, pp. 224-229. DOI: 10.1016/j.meegid.2019.02.001

20. Zaki A.M., van Boheemen S., Bestebroer T.M., Osterhaus A.D., Fouchier R.A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med., 2012, vol. 367, no. 19, pp. 1814-1820. DOI: 10.1056/NEJMoa1211721

21. Woo P.C., Lau S.K., Li K.S., Tsang A.K., Yuen K.Y. Genetic relatedness of the novel human group C betacoronavirus to Tylonycteris bat coronavirus HKU4 and Pipistrellus bat coronavirus HKU5. Emerg Microbes Infect., 2012, vol. 1, iss. 1, pp. 1-5. DOI: 10.1038/emi.2012.45

22. Subudhi S., Rapin N., Bollinger T.K., Hill J.E., Donaldson M.E., Davy C.M., Warnecke L., Turner J.M., Kyle C.J., Willis C.K.R., Misra V. A persistently infecting coronavirus in hibernating Myotis lucifugus, the North American little brown bat. J Gen Virol., 2017, vol. 98, iss. 9, pp. 2297-2309. DOI: 10.1099/jgv.0.000898

23. Lau S.K., Li K.S., Tsang A.K., Shek C.T., Wang M., Choi G.K., Guo R., Wong B.H., Poon R.W., Lam C.S., Wang S.Y., Fan R.Y., Chan K.H., Zheng B.J., Woo P.C., Yuen K.Y. Recent transmission of a novel alphacoronavirus, bat coronavirus HKU10, from Leschenault's rousettes to pomona leafnosed bats: first evidence of interspecies transmission of coronavirus between bats of different suborders. J Virol., 2012, vol. 86, iss. 21, pp. 11906-11918. DOI: 10.1128/JVI.01305-12

24. Chu D.K.W., Peiris J.S.M., Chen H., Guan Y., Poon L.L.M. Genomic characterizations of bat coronaviruses (1A, 1B and HKU8) and evidence for co-infections in Miniopterus bats. J Gen Virol., 2008, vol. 89, iss. 5, pp. 1282-1287. DOI: 10.1099/vir.0.83605-0

25. Wacharapluesadee S., Duengkae P., Chaiyes A., Kaewpom T., Rodpan A., Yingsakmongkon S., Petcharat S., Phengsakul P., Maneeorn P., Hemachudha T. Longitudinal study of age-specific pattern of coronavirus infection in Lyle's flying fox (Pteropus lylei) in Thailand. Virol J., 2018, vol. 15, no. 1, pp. 38. DOI: 10.1186/s12985-018-0950-6

26. Davy C.M., Donaldson M.E., Subudhi S., Rapin N., Warnecke L., Turner J.M., Bollinger T.K., Kyle C.J., Dorville N.A.S., Kunkel E.L., Norquay K.J.O., Dzal Y.A., Willis C.K.R., Misra V. White-nose syndrome is associated with increased replication of a naturally persisting coronaviruses in bats. Sci Rep., 2018, vol. 8, no. 1, pp. 15508. DOI: 10.1038/s41598-018-33975-x

27. Drexler J.F., Corman V.M., Wegner T., Tateno A.F., Zerbinati R.M., Gloza-Rausch F., Seebens A., Müller M.A., Drosten C. Amplification of emerging viruses in a bat colony. Emerg Infect Dis., 2011, vol. 17, no. 3, pp. 449-456. DOI: 10.3201/eid1703.100526

28. Watanabe S., Masangkay J.S., Nagata N., Morikawa S., Mizutani T., Fukushi S., Alviola P., Omatsu T., Ueda N., Iha K., Taniguchi S., Fujii H., Tsuda S., Endoh M., Kato K., Tohya Y., Kyuwa S., Yoshikawa Y., Akashi H. Bat coronaviruses and experimental infection of bats, the Philippines. Emerg Infect Dis., 2010, vol. 16, no. 8, pp. 1217-1223. DOI: 10.3201/eid1608.100208

29. Yang X.L., Hu B., Wang B., Wang M.N., Zhang Q., Zhang W., Wu L.J., Ge X.Y., Zhang Y.Z., Daszak P., Wang L.F., Shi Z.L. Isolation and Characterization of a Novel Bat Coronavirus Closely Related to the Direct Progenitor of Severe Acute Respiratory Syndrome Coronavirus. J Virol., 2015, vol. 90, no. 6, pp. 3253-3256. DOI: 10.1128/JVI.02582-15

30. Van Doremalen N., Schäfer A., Menachery V.D., Letko M., Bushmaker T., Fischer R.J., Figueroa D.M., Hanley P.W., Saturday G., Baric R.S., Munster V.J. SARS-Like Coronavirus WIV1-CoV Does Not Replicate in Egyptian Fruit Bats (Rousettus aegyptiacus). Viruses, 2018, vol. 10, no. 12, 727 p. DOI: 10.3390/v10120727

31. Drexler J.F., Gloza-Rausch F., Glende J., Corman M., Pfefferle S., Yordanov S., Zhelyazkov L., Hermanns U., Vallo P., Lukashev A., Müller M.A., Deng H., Herrler G., Drosten C. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNAdependent RNA polymerase gene sequences. J Virol., 2010, vol. 84, no. 21, pp. 11336-11349. DOI: 10.1128/JVI.0065010

32. Pan Y., Tian X., Qin P., Wang B., Zhao P., Yang Y.L., Wang L., Wang D., Song Y., Zhang X., Huang Y.W. Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China. Vet Microbiol., 2017, vol. 211, pp. 15-21. DOI: 10.1016/j.vetmic.2017.09.020

33. Wang M., Yan M., Xu H., Liang W., Kan B., Zheng B., Chen H., Zheng H., Xu Y., Zhang E., Wang H., Ye J., Li G., Li M., Cui Z., Liu Y.F., Guo R.T., Liu X.N., Zhan L.H., Zhou D.H., Zhao A., Hai R., Yu D., Guan Y., Xu J. SARS-CoV infection in a restaurant from palm civet. Emerg Infect Dis., 2005, vol. 11, no. 12, pp. 1860-1865. DOI: 10.3201/eid1112.041293

34. Sabir J.S., Lam T.T., Ahmed M.M., Li L., Shen Y., AboAba S.E., Qureshi M.I., Abu-Zeid M., Zhang Y., Khiyami M.A., Alharbi N.S., Hajrah N.H., Sabir M.J., Mutwakil M.H., Kabli S.A., Alsulaimany F.A., Obaid A.Y., Zhou B., Smith D.K., Holmes E.C., Zhu H., Guan Y. Co-circulation of three camel coronavirus species and recombination of MERSCoVs in Saudi Arabia. Science, 2016, vol. 351, iss. 6268, pp. 81-84. DOI: 10.1126/science.aac8608

35. Corman V.M., Eckerle I., Memish Z.A., Liljander A.M., Dijkman R., Jonsdottir H., Juma Ngeiywa K.J., Kamau E., Younan M., Al Masri M., Assiri A., Gluecks I., Musa B.E., Meyer B., Müller M.A., Hilali M., Bornstein S., Wernery U., Thiel V., Jores J., Drexler J.F., Drosten C. Link of a ubiquitous human coronavirus to dromedary camels. Proc Natl Acad Sci USA, 2016, vol. 113, iss. 35, pp. 9864-9869. DOI: 10.1073/pnas.1604472113

36. Zhang W., Zheng X.S., Agwanda B., Ommeh S., Zhao K., Lichoti J., Wang N., Chen J., Li B., Yang X.L., Mani S., Ngeiywa K.J., Zhu Y., Hu B., Onyuok S.O., Yan B., Anderson D.E., Wang L.F., Zhou P., Shi Z.L. Serological evidence of MERS-CoV and HKU8-related CoV co-infection in Kenyan camels. Emerg Microbes Infect., 2019, vol. 8, iss. 1, pp. 1528-1534. DOI: 10.1080/22221751.2019.1679610

37. Wang N., Li S.Y., Yang X.L., Huang H.M., Zhang Y.J., Guo H., Luo C.M., Miller M., Zhu G., Chmura A.A., Hagan E., Zhou J.H., Zhang Y.Z., Wang L.F., Daszak P., Shi Z.L. Serological Evidence of Bat SARS-Related Coronavirus Infection in Humans, China. Virol Sin., 2018, vol. 33, no. 1, pp. 104-107. DOI: 10.1007/s12250-018-0012-7

38. Hamre D., Procknow J.J. A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med., 1966, vol. 121, no. 1, pp. 190-193. DOI: 10.3181/00379727-12130734

39. McIntosh K., Becker W.B., Chanock RM. Growth in suckling-mouse brain of "IBV-like" viruses from patients with upper respiratory tract disease. Proc Natl Acad Sci USA, 1967, vol. 58, iss. 6, pp. 2268-2273. DOI: 10.1073/pnas.58.6.2268

40. van der Hoek L., Pyrc K., Jebbink M.F., Vermeulen-Oost W., Berkhout R.J., Wolthers K.C., Wertheim-van Dillen P.M., Kaandorp J., Spaargaren J., Berkhout B. Identification of a new human coronavirus. Nat Med., 2004, vol. 10, iss. 4, pp. 368-373. DOI: 10.1038/nm1024

41. Woo P.C., Lau S.K., Chu C.M., Chan K.H., Tsoi H.W., Huang Y., Wong B.H., Poon R.W., Cai J.J., Luk W.K., Poon L.L., Wong S.S., Guan Y., Peiris J.S., Yuen K.Y. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol., 2005, vol. 79, iss. 2, pp. 8884-8895. DOI: 10.1128/JVI.79.2.884-895.2005

42. van der Hoek L. Human coronaviruses: what do they cause? Antivir Ther., 2007, vol. 12, iss. 4, pt. B., pp. 651-658.

43. Peiris J.S., Lai S.T., Poon L.L., Guan Y., Yam L.Y., Lim W., Nicholls J., Yee W.K., Yan W.W., Cheung M.T., Cheng V.C., Chan K.H., Tsang D.N., Yung R.W., Ng T.K., Yuen K.Y.; SARS study group. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet, 2003, vol. 361, iss. 9366, pp. 1319-1325. DOI: 10.1016/s0140-6736(03)130772

44. Shchelkanov M.Yu., Ananiev V.Yu., Kuznetsov V.V., Shumatov V.B. Middle East respiratory syndrome: when will smouldering focus outbreak? Tikhookeanskii meditsinskii zhurnal [Pacific Medical Journal]. 2015, no. 2, pp. 94-98. (In Russian)

45. Schelkanhov M.Yu., Ananiev V.Yu., Kuznetsov V.V., Shumatov V.B. Epidemic outbreak of mers in the Republic of Korea (May-July, 2015): reasons, dynamics, conclusions. Tikhookeanskii meditsinskii zhurnal [Pacific Medical Journal]. 2015, vol. 3. pp. 25-29. (In Russian)

46. Haagmans B.L., Al Dhahiry S.H., Reusken C.B., Raj V.S., Galiano M., Myers R., Godeke G.J., Jonges M., Farag E., Diab A., Ghobashy H., Alhajri F., Al-Thani M., Al-Marri S.A., Al Romaihi H.E., Al Khal A., Bermingham A., Osterhaus A.D., AlHajri M.M., Koopmans M.P. Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation. Lancet Infect Dis., 2014, vol. 14, iss. 2, pp. 140-145. DOI: 10.1016/S1473-3099(13)70690-X

47. Guo Y.R., Cao Q.D., Hong Z.S., Tan Y.Y., Chen S.D., Jin H.J., Tan K.S., Wang D.Y., Yan Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil Med Res., 2020, vol. 7, no. 1, pp. 11. DOI: 10.1186/s40779-02000240-0

48. Vstupitel'noe slovo General'nogo direktora VOZ na brifinge po COVID-19 dlya postoyannykh predstavitel'stv 12 marta 2020 g. [WHO Director-General's opening remarks at the Mission briefing on COVID-19 – 12 March 2020]. Available at: https://www.who.int/ru/dg/speeches/detail/whodirector-general-s-opening-remarks-at-the-missionbriefing-on-covid-19---12-march-2020 (accessed 19.06.2020)

49. Zhang T., Wu Q., Zhang Z. Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak. Curr Biol., 2020, vol. 30, iss. 7, pp. 1346-1351. DOI: 10.1016/j.cub.2020.03.022

50. Scott G.B., Keymer I.F. The pathology of measles in Abyssinian Colobus monkeys (Colobus guereza): a description of an outbreak. J Pathol., 1975, vol. 117, iss. 4, pp. 229-33. DOI: 10.1002/path.1711170405

51. Zhu W., Yang S., Dong L., Yang L., Tang J., Zou X., Chen T., Yang J., Shu Y. The repeated introduction of the H3N2 virus from human to swine during 1979-1993 in China. Infect Genet Evol., 2015, vol. 33, pp. 20-24. DOI: 10.1016/j.meegid.2015.04.001

52. Allela L., Boury O., Pouillot R., Délicat A., Yaba P., Kumulungui B., Rouquet P., Gonzalez J.P., Leroy E.M. Ebola virus antibody prevalence in dogs and human risk. Emerg Infect Dis., 2005, vol. 11, no. 3, pp. 385-390. DOI: 10.3201/eid1103.040981

53. Chen W., Yan M., Yang L., Ding B., He B., Wang Y., Liu X., Liu C., Zhu H., You B., Huang S., Zhang J., Mu F., Xiang Z., Feng X., Wen J., Fang J., Yu J., Yang H., Wang J. SARSassociated coronavirus transmitted from human to pig. Emerg Infect Dis., 2005, vol. 11, no. 3, pp. 446-448. DOI: 10.3201/eid1103.040824

54. Leroy E.M., Ar Gouilh M., Brugère-Picoux J. The risk of SARS-CoV-2 transmission to pets and other wild and domestic animals strongly mandates a one-health strategy to control the COVID-19 pandemic. One Health, 2020, (In press) DOI: 10.1016/j.onehlt.2020.100133

55. COVID-19 Found on Additional Dutch Mink Farms. Available at: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=COVID19%20Found%20on%20Additional%20Dutch%20Mink%20Farms%20_The%20Hague_Netherlands_05-31-2020 (accessed 16.06.2020)

56. Government of the Netherlands. New results from research into COVID-19 on mink farms. Available at: https://www.government.nl/latest/news/2020/05/19/new-results-from-research-into-covid-19-on-mink-farms (accessed 16.06.2020)


Review

For citations:


Shestopalov A.M., Kononova Yu.V., Gadzhiev A.A., Gulyaeva M.A., Vasfi M.M., Alekseev A.Yu., Jamalutdinov J.M., Shchelkanov M.Yu. Biodiversity and epidemic potential of Chiropteran coronaviruses (Nidovirales: Coronaviridae). South of Russia: ecology, development. 2020;15(2):17‐34. (In Russ.) https://doi.org/10.18470/1992-1098-2020-2-17-34

Views: 1387


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1992-1098 (Print)
ISSN 2413-0958 (Online)