Estimation of the Coefficients of the Equation of Acoustic Target Strength Based on the Morphology of Coregonus migratorius (Georgi, 1775) Swim Bladder
https://doi.org/10.18470/1992-1098-2020-1-89-98
Abstract
Aim. The aim of the study was to estimate the coefficients of the equation TSmax=f(SL) considering the characteristics of an acoustic scattering model based on the morphological characteristics of the swim bladder of the Coregonus migratorius (Georgi, 1775).
Material and Methods. Ninety‐nine living specimens of C. migratorius served as the study material. For each specimen, the target strength in the cage was measured using an Kongsberg Simrad EY500 echo sounder and the morphology of the swim bladder was studied. Measurements, analysis of images and data were conducted using Image Pro 6.0. Excel and SciLab software resources.
Results. We determined the main morphological characteristics of the swim bladder in C. migratorius as well as the correspondence of its dimensions and proportions in relation to the length of the fish’s body. The coefficients of the equation TS=20log(SL)‐60, calculated on the results of the acoustic scattering model of a prolate spheroid, agree well with the coefficients calculated from maximum values obtained in the cage experiment. During the conversion of the coefficients relating to the allometric changes in the length of the swim bladder relative to fish length, the equation TS=23.2log(SL)‐64.4 was obtained. A comparative analysis of the available equations of the target strength for C. migratorius with those obtained in the study was undertaken.
Conclusion. The equation obtained on the model of the swim bladder as a prolate spheroid adequately describes the dependence of the maximum values of the target strength on the body length of the C. migratorius and confirms the previously obtained dependence by maximum values of TS in the cage experimental conditions and can serve as a basis for further theoretical studies.
Keywords
About the Authors
P. N. AnoshkoRussian Federation
Pavel N. Anoshko
M. M. Makarov
Russian Federation
Mikhail M. Makarov, Cand. Geogr. Sci., Senior Researcher, Laboratory of Interdisciplinary Environmental‐Economic Research and Technology
3 Ulan‐Batorskaya St/Post Office Box 278, Irkutsk, 664009. Теl. +7(3952)423299
S. B. Popov
Russian Federation
Sergei B. Popov
A. I. Degtev
Russian Federation
Andrey I. Degtev
N. N. Denikina
Russian Federation
Natalia N. Denikina
E. V. Dzyuba
Russian Federation
Elena V. Dzyuba
References
1. Kudryavtsev V.I., Dyogtev A.I., Borisenko E.S., Mochek A.D. The experience of use of hydroacoustical method and the outfit for assessment of water biomass at inner water bodies. Rybnoye khozyaystvo [Fisheries]. 2006, no. 5, pp. 69‐72. (In Russian)
2. Mel'nik N.G., Smirnova‐Zalumi N.S., Smirnov V.V., Mamontov A.M., Anoshko P.N., Agafonnikov V.A., Astaf'ev S.E., Bondarenko V.M., Varnavskii A.V., Goncharov S.M., Granin N.G., Dzyuba E.V., Degtev A.I., Degtyarev V.A., Kucher K.M., Kotsar' O.V., Makarov M.M., Mizyurkin M.A., Nebesnykh I.N., Popov S.B., Raskin A.S., Smirnova O.G., Smolin I.A., Sokolov A.V., Sorokovikov A.V., Tesler V.D., Tyagun M.L., Tolstikova L.I., Khanaev I.V., Chenskii A.G., Sherstyankin P.P., Yakhnenko V.M., Yakup M.A., Rudstam L., Giiar Zh., Kudryavtsev V.I. Gidroakusticheskii uchet resursov baikal'skogo omulya [Hydroacoustic surveys of Baikal omul]. Novosibirsk, Nauka Publ., 2009, 244 p. (In Russian)
3. Denikina N.N., Dzyuba E.V., Bel’kova N.L., Khanaev I.V., Feranchuk S.I., Makarov M.M., Granin N.G., Belikov S.I. The first case of disease of the sponge Lubomirskia baicalensis: Investigation of its microbiome. Biology Bulletin, 2016, vol. 43, no. 3, pp. 263‐270. DOI: 10.7868/S0002332916030024
4. Khanaev I.V., Dzyuba E.V., Kravtsova L.S., Grachev M.A. The effect of bloom of filamentous green algae on the reproduction of yellowfin sculpin Cottocomephorus grewingkii (Dybowski, 1874) (Cottoidae) during ecological crisis in Lake Baikal. Doklady Biological Sciences, 2016, vol. 467, no. 1, pp. 63‐64. DOI: 10.7868/S0869565216070306
5. Timoshkin O.A., Samsonov D.P., Yamamuro M., Moore M.V., Belykh O.I., Malnik V.V., Sakirko M.V., Shirokaya A.A., Bondarenko N.A., Domysheva V.M., Fedorova G.A., Kochetkov A.I., Kuzmin A.V., Lukhnev A.G., Medvezhonkova O.V., Nepokrytykh A.V., Pasynkova E.M., Poberezhnaya A.E., Potapskaya N.V., Rozhkova N.A., Sheveleva N.G., Tikhonova I.V., Timoshkina E.M., Tomberg I.V., Volkova E.A., Zaitseva E.P., Zvereva Yu.M., Kupchinsky A.B., Bukshuk N.A. Rapid ecological change in the coastal zone of Lake Baikal (East Siberia): Is the site of the world's greatest freshwater biodiversity in danger? Journal of Great Lakes Research, 2016, no. 42, pp. 487‐497. DOI: 10.1016/j.jglr.2016.02.011
6. Timoshkin O.A., Moore M.V., Kulikova N.N., Tomberg I.V., Malnik V.V., Shimaraev M.N., Troitskaya E.S., Shirokaya A.A., Sinyukovich V.N., Zaitseva E.P., Domysheva V.M., Yamamuro M., Poberezhnaya A.E., Timoshkina E.M. Groundwater contamination by sewage causes benthic algal outbreaks in the littoral zone of Lake Baikal (East Siberia). Journal of Great Lakes Research, 2018, vol. 44, iss. 2, pp. 230‐244. DOI: 10.1016/j.jglr.2018.01.008
7. Foote K.G. Importance of the swimbladder in acoustic scattering by fish: A comparison of gadoid and mackerel target strengths. Journal of the Acoustical Society of America, 1980, vol. 67, iss. 6, pp. 2084‐2089. DOI: 10.1121/1.384452
8. Goncharov S.M., Popov S.B., Bondarenko V.M., Melnik N.G., Smirnova N.S., Khanaev I.V. Measurement of target strength of Baikal omul (Coregonus autumnalis migratorius) for increasing the accuracy of its stock assessment in Lake Baikal. Rybnoye khozyaystvo [Fisheries]. 2008, no. 3, pp. 87‐90. (In Russian)
9. Makarov M.M., Degtev A.I., Khanaev I.V., Kucher K.M., Smolin I.N., Nebesnykh I.A., Anoshko P.N., Dzyuba E.V. Experimental studies for measuring the target strength of the baikalian omul at the frequency of 200 Khz. International Journal of Applied and Fundamental Research, 2018, no. 2, pp. 142‐146. Doi: 10.17513/mjpfi.12124
10. Machias A., Tsimenides N. Anatomical and physiological factors affecting the swim‐bladder cross‐section of the sardine Sardina pilchardus. Canadian Journal of Fisheries and Aquatic Sciences, 1996, vol. 53, iss. 2, pp. 280‐287. DOI: 10.1139/f95‐188
11. Benoit‐Bird K.J., Au W.W.L., Kelley C.D. Acoustic backscattering by Hawaiian lutjanid snappers. I. Target strength and swim bladder characteristics. Journal of the Acoustical Society of America, 2003, vol. 114, iss. 5, pp. 2757‐2766. DOI: 10.1121/1.1614256
12. Knudsen F.R., Gjelland K.Ø. Hydroacoustic observations indicating swim bladder volume compensation during the diel vertical migration in coregonids (Coregonus lavaretus and Coregonus albula). Fisheries Research, 2004, vol. 66, iss. 2‐3, pp. 337‐341. DOI: 10.1016/S0165‐7836(03)00191‐7
13. Furusawa M. Prolate spheroidal models for predicting general trends of fish target strength. Journal of the Acoustical Society of Japan, 1988, vol. 9, iss. 1, pp. 13‐24. DOI: 10.1250/ast.9.13
14. Ayoubi S.E., Mamza K., Fujino T., Abe K., Amakasu K.,∙Miyashita K. Estimation of target strength of Sardina pilchardus and Sardinella aurita by theoretical approach. Fisheries Science, 2016, vol. 82, pp. 417‐423. DOI:1007/s12562‐016‐0986‐8
15. Tomiyasu M., Kao W., Abe K., Minami K., Hirose T., Ogawa M., Miyashita K. The relationship between body angle and target strength of ribbonfish (Trichiurus japonicus) displaying a vertical swimming motion. ICES Journal of Marine Science, 2016, vol. 73, iss. 8, pp. 2049‐2057. Doi: 10.1093/icesjms/fsw095
16. Kudryavtsev V.I., Dyogtev A.I., Sokolov A.V. About peculiarities of quantitative assessment of Baikal omul stock by hydroacoustic method. Rybnoye khozyaystvo [Fisheries]. 2005, no. 3, pp. 66‐69. (In Russian)
17. Mehner T. Prediction of hydroacoustic target strength of vendace (Coregonus albula) from concurrent trawl catches. Fisheries Research, 2006, vol. 79, iss. 1‐2, pp. 162‐169. DOI: 10.1016/j.fishres.2006.01.014
18. Borisenko E.S., Gusar A.G., Goncharov S.M. The target strength dependence of some freshwater species on their length‐weight characteristics. Proceedings of the Institute of Acoustics,1989, vol. 11, pp. 27‐34.
19. Rudstam L.G., Parker S.L., Einhouse D.W., Witzel L.D., Warner D.M., Stritzel J.L., Parrish D.L., Sullivan P.J. Application of in situ target‐strength estimations in lakes examples from rainbow smelt surveys in Lakes Erie and Champlain. ICES Journal of Marine Science, 2003, vol. 60, iss. 3, pp. 500‐507. DOI: 10.1016/S1054‐3139(03)00046‐8
20. Jolles J.W., Boogert N.J., Sridhar V.H., Couzin I.D., Manica A. Consistent individual differences drive collective behavior and group functioning of schooling fish. Current Biology, 2017, vol. 27, iss. 18, pp. 2862‐2868. DOI: 10.1016/j.cub.2017.08.004
21. Griffiths C.A., Patterson T.A., Blanchard J.L., Righton D.A., Wright S.R., Pitchford J.W., Blackwell P.G. Scaling marine fish movement behavior from individuals to populations. Ecology and Evolution, 2018, vol. 8, iss. 14, pp. 7031‐7043. DOI: 10.1002/ece3.4223
22. Filella A., François N., Sire C., Kanso E., Eloy C. Model of collective fish behavior with hydrodynamic interactions. Physical Review Letters, 2018, vol. 120, iss. 19, pp. 1‐6. DOI: 10.1103/PhysRevLett.120.198101
23. Wang X., Zhang J., Zhao X., Chen Z., Ying Y., Li Z., Xu D., Liu Z., Zhou M. Vertical distribution and diel migration of mesopelagic fishes on the northern slope of the South China sea. Deep‐Sea Research Part II: Topical Studies in Oceanography, 2019, vol. 167, pp. 128‐141. DOI: 10.1016/j.dsr2.2019.05.009
24. Navarro‐Guillén C., Cerqueira M., Conceição Luis E.C., Yúfera M., Engrola S. Daily nutrient utilization and swimming activity patterns in Senegalese sole (Solea senegalensis) post‐larvae. Aquaculture, 2018, vol. 492, pp. 164‐169. DOI: 10.1016/j.aquaculture.2018.03.063
25. Kasumyan A.O., Pavlov D.S. Evolution of schooling behavior in fish. Journal of Ichthyology, 2018, vol. 58, no. 5, pp. 670‐678. DOI: 10.1134/S0032945218050090
Review
For citations:
Anoshko P.N., Makarov M.M., Popov S.B., Degtev A.I., Denikina N.N., Dzyuba E.V. Estimation of the Coefficients of the Equation of Acoustic Target Strength Based on the Morphology of Coregonus migratorius (Georgi, 1775) Swim Bladder. South of Russia: ecology, development. 2020;15(1):89-98. (In Russ.) https://doi.org/10.18470/1992-1098-2020-1-89-98