Modern application and prospects of the stable isotopes method for studying avian influenza A virus transmission in migratory birds
https://doi.org/10.18470/1992-1098-2019-3-92-100
Abstract
Aim. The circulation and transmission of pathogens is a global biological phenomenon that is closely associated with bird migration. This analysis was carried out with the aim of understanding and assessing the prospects of using the stable isotope method to study the circulation and transmission of the avian influenza A virus via migratory birds.
Discussion. Insufficient data on the distances of migration of infected birds and their interpopulational relationships leaves open the question of the transmission of highly pathogenic influenza viruses (HSV) in the wild bird population. A deeper study of the role of migrations in the spread of HSV may possibly allow the more effective investigation of the transmission of the viral pathogen between individuals at migration stopover sites and the clarification of global migration routes. New methodological approaches are providing a more complete picture of the geography and phenology of migrations, as well as of the consequences of migratory behavior for species biology. The study of the quantitative component of migratory flows based on the analysis of the content of stable isotopes (SIMS) in bird tissues seems very promising. This method is being applied to the solution of various environmental issues, including the study of animal migrations.
Conclusion. Based on data from the scientific literature, it is shown that SIMS is promising for the clarification of bird migration routes and the quantification of their intensity. The resolving power of the method is sufficient to determine the migration pathways of carriers of viral pathogens on the scale of zoogeographic subdomains and in even further detail. However, to date, there have been few such studies: in Russia they have not been conducted at all. The increased use of the SIMS methodology may possibly reveal new ways in which viral infections are spread via birds.
About the Authors
O. R. DruzyakaRussian Federation
A. V. Druzyaka
Russian Federation
M. A. Gulyaeva
Russian Federation
2 Pirogova St, Novosibirsk, Russia 630090; 2 Timakova St, Novosibirsk, Russia 30117
F. Huettmann
Russian Federation
Fairbanks, Alaska
A. M. Shestopalov
Russian Federation
References
1. Newton I. The migration ecology of birds. Elsevier, 2010, 984 p.
2. Rubenstein D.R., Hobson K.A. From birds to butterflies: animal movement patterns and stable isotopes. Trends in ecology & evolution, 2004, vol. 19, iss. 5, pp. 256‐263. Doi: 10.1016/j.tree.2004.03.017
3. Bianki V.V., Dobrynina I.N. Migrations of birds in Eastern Europe and North Asia. In: Plastinchatoklyuvyye. Rechnyye utki [Lamellar‐billed. River ducks]. Moscow, Nauka Publ., 1997, 320 p. (In Russian)
4. Veen J., Yurlov A.K., Delany S.N., Mihantiev A.I., Selivanova M.A., Boere G.C. An atlas of movements of Southwest Siberian waterbirds. Wetlands Internat., Wageningen, 2005, pp. 10‐17.
5. Webster M.S., Marra P.P., Haig S.M., Bensch S., Holmes R.T. Links between worlds: unraveling migratory connectivity. Trends in Ecology & Evolution, 2002, vol. 17, iss. 2, pp. 76‐83. Doi: 10.1016/S0169‐5347(01)02380‐1
6. Koblik E., Arkhipov V., Red'kin Ya. Spisok ptits Rossiyskoy federatsii [List of birds of the Russian Federation]. Litres, 2018, 256 p. (In Russian)
7. Chamberlain C.P., Blum J.D., Holmes R.T., Feng X.H., Sherry T.W., Graves G.R. The use of isotope tracers for identifying populations of migratory birds. Oecologia, 1996, vol. 109, iss. 1, pp. 132‐141. Doi: 10.1007/s004420050067
8. Hobson K.A., Wassenaar L.I. Linking breeding and wintering grounds of neotropical migrant songbirds using stable hydrogen isotopic analysis of feathers. Oecologia, 1997, vol. 109, iss. 1, pp. 142‐148. Doi: 10.1007/s004420050068
9. Inger R., Bearhop S. Applications of stable isotope analyses to avian ecology. Ibis, 2008, vol. 150, iss. 3, pp. 447‐461. Doi: 10.1111/j.1474‐919X.2008.00839.x
10. Webster R.G., Bean W.J., Gorman O.T., Chambers T.M., Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiology and molecular biology reviews. 1992, vol. 56, iss. 1, pp. 152‐179.
11. Reed K.D., Meece J.K., Henkel J.S., Shukla S.K. Birds, migration and emerging zoonoses: West Nile virus, Lyme disease, influenza A and enteropathogens. Clinical medicine and research. 2003, vol. 1, iss. 1, pp. 5‐12.
12. Mikheev A.V. Spatial structure of populations in birds. Russkiy ornitologicheskiy zhurnal [Russian Journal of Ornithology]. 2010, vol. 19, no. 592, pp. 1499‐1509. (In Russian)
13. De Marco M.A., Sharshov K., Gulyaeva M., Delogu M., Ciccarese L., Castrucci M. R., Shestopalov A. Chapter: Ecology of Avian Influenza Viruses in Siberia. Book: Siberia: Ecology, Diversity and Environmental Impact, Nova Science Pub Inc. 2016, 235 p.
14. Gavrilov E.I., Ravkin Yu.S. Migratsii ptits v Azii [Bird Migration in Asia]. Novosibirsk, Nauka Publ., 1986, 261 p. (In Russian)
15. Gaidet N., Cappelle J., Takekawa J.Y., Prosser D.J., Iverson S.A., Douglas D.C., Perry W.M., Mundkur T., Newman S.H. Potential spread of highly pathogenic avian influenza H5N1 by wildfowl: dispersal ranges and rates determined from large‐scale satellite telemetry. Journal of Applied Ecology, 2010, vol. 47, iss. 5, pp. 1147‐1157. Doi: 10.1111/j.13652664.2010.01845.x
16. Gulyaeva M.A., Sharshov K.A., Zaykovskaia A.V., Shestopalova L.V., Shestopalov A.M. Experimental infection and pathology of Clade 2.2 H5N1 virus in gulls. J Vet Sci., 2016, vol. 17, iss. 2, pp. 179‐188. Doi: 10.4142/jvs.2016.17.2.179
17. Takekawa J.Y., Newman S.H., Xiao X., Prosser D.J., Spragens K.A., Palm E.C., Yan B., Li T., Lei F., Zhao D., Douglas D.C., Muzaffar S.B., Ji W. Migration of waterfowl in the East Asian flyway and spatial relationship to HPAI H5N1 outbreaks. Avian Dis., 2010, vol. 54, 1 suppl., pp. 466‐476. Doi: 10.1637/8914‐043009‐Reg.1
18. Iverson S.A., Gavrilov A., Katzner T.E., Takekawa J.Y., Miller T.A., Hagemeijer W., Mundkur T., Sivananinthaperumal B., DeMattos C.C., Ahmed L.S., Newman S.H. Migratory movements of waterfowl in Central Asia and avian influenza emergence: sporadic transmission of H5N1 from east to west. Ibis, 2011, vol. 153, iss. 2, pp. 279‐292. Doi: 10.1111/j.1474919X.2010.01095.x
19. Cappelle J., Iverson S.A., Takekawa J.Y., Newman S.H., Dodman T., Gaidet N. Implementing telemetry on new species in remote areas: recommendations from a large‐scale satellite tracking study of African waterfowl. Ostrich, 2011, vol. 82, iss. 1, pp. 17‐26. Doi: 10.2989/00306525.2011.556786
20. Hobson K.A. Stable isotopes and the determination of avian migratory connectivity and seasonal interactions. The Auk, 2005, vol. 122, iss. 4, pp. 1037‐1048. Doi: 10.1093/auk/122.4.1037
21. Yuan‐Mou C., Hatch K.A., Ding T.S., Eggett D.L., Yuan H.W., Roeder B.L. Using stable isotopes to unravel and predict the origins of great cormorants (Phalacrocorax carbo sinensis) overwintering at Kinmen. Rapid Communications in Mass Spectrometry, 2008, vol. 22, iss. 8, pp. 1235‐1244. Doi: 10.1002/rcm.3487
22. Wunder M.B., Kester C.L., Knopf F.L., Rye R.O. A test of geographic assignment using isotope tracers in feathers of known origin. Oecologia, 2005, vol. 144, iss. 4, pp. 607‐617. Doi: 10.1007/s00442‐005‐0071‐y
23. Kelly J.F., Johnson M.J., Langridge S., Whitfield M. Efficacy of stable isotope ratios in assigning endangered migrants to breeding and wintering sites. Ecol. Appl., 2008, vol. 18, iss. 3, pp. 568‐576.
24. Hallworth M.T., Marra P.P. Miniaturized GPS Tags Identify Non‐breeding Territories of a Small Breeding Migratory Songbird. Scientific Reports, 2015, vol. 5, pp. 1106‐1109. Doi: 10.1038/srep11069
25. Hill N.J., Takekawa J.Y., Ackerman J.T., Hobson K.A., Herring G., Cardona C.J., Runstadler J.A., Boyce W.M. Migration strategy affects avian influenza dynamics in mallards (Anas platyrhynchos). Molecular Ecology, 2012, vol. 21, iss. 24, pp. 5986‐5999. Doi: 10.1111/j.1365‐294X.2012.05735.x
26. Guillemain M., van Wilgenburg S.L., Legagneux P., Hobson K.A. Assessing geographic origins of Teal (Anas crecca) through stable‐hydrogen (δ 2H) isotope analyses of feathers and ring‐recoveries. Journal of Ornithology, 2014, vol. 155, iss. 1, pp. 165‐172. Doi: 10.1007/s10336‐013‐0998‐4
27. Fox A.D., Hobson K.A., de Jong A., Kardynal K.J., Koehler G., Heinicke T. Flyway population delineation in Taiga Bean Geese Anser fabalis fabalis revealed by multi‐element feather stable isotope analysis. Ibis, 2017, vol. 159, iss. 1, pp. 66‐75. Doi: 10.1111/ibi.12417
28. Michener R.H., Lajtha K. Stable isotopes in ecology and environmental science. Blackwell Pub., 2007, 591 p.
29. Viljoen G.J., Luckins A.G., Naletoski I. Stable Isotopes to Trace Migratory Birds and to Identify Harmful Diseases. Springer, 2016, 43 p.
30. Ekaykin A.A. Stabil'nye izotopy vody v glyatsiologii i paleogeografii [Stable water isotopes in glaciology and paleogeography]. St. Petersburg, AARI Publ., 2016, 63 p. (In Russian)
31. Rubenstein D.R., Hobson K.A. From birds to butterflies: animal movement patterns and stable isotopes. Trends in ecology & evolution, 2004, vol. 19, iss. 5, pp. 256‐263. Doi: 10.1016/j.tree.2004.03.017
32. Hobson K.A. Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia, 1999, vol. 120, iss. 3, pp. 314‐326. Doi: 10.1007/s004420050865
33. Wassenaar L.I., Hobson K.A. Improved Method for Determining the Stable‐Hydrogen Isotopic Composition (δD) of Complex Organic Materials of Environmental Interest. Environ. Sci. Technol., 2000, vol. 34, iss. 11, pp. 2354‐2360. Doi: 10.1021/es990804i
34. Bearhop S., Waldron S., Votier S.C., Furnesset R.W. Factors that influence assimilation rates and fractionation of nitrogen and carbon stable isotopes in avian blood and feathers. Physiol. Biochem. Zool., 2002, vol. 75, iss. 5, pp. 451458. Doi: 10.1086/342800
35. Schaffner F.C., Swart P.K. Influence of diet and environmental water on the carbon and oxygen isotopic signatures of seabird eggshell carbonate. Bulletin of Marine Science. 1991, vol. 48, iss. 1, pp. 23‐38.
36. Vogel J.C., Eglington B., Auret J.M. Isotope fingerprints in elephant bone and ivory. Nature, 1990, vol. 346, pp. 747‐749. Doi: 10.1038/346747a0
37. Fry B. Fish and shrimp migrations in the northern Gulf of Mexico analyzed using stable carbon and nitrogen and sulfur isotope ratios. US Natl Mar Fish Serv Bull., 1984, vol. 81, iss. 4, pp. 789‐802.
38. Terzer S., Wassenaar L.I., Araguás‐Araguás L.J., Aggarwal P.K. Global isoscapes for δ18 O and δ2 H in precipitation: improved prediction using regionalized climatic regression models. Hydrology and Earth System Sciences, 2013, vol. 17, iss. 11, pp. 4713‐4728. Doi: 10.5194/hess‐17‐4713‐2013
Review
For citations:
Druzyaka O.R., Druzyaka A.V., Gulyaeva M.A., Huettmann F., Shestopalov A.M. Modern application and prospects of the stable isotopes method for studying avian influenza A virus transmission in migratory birds. South of Russia: ecology, development. 2019;14(3):92-100. (In Russ.) https://doi.org/10.18470/1992-1098-2019-3-92-100