Preview

South of Russia: ecology, development

Advanced search

Modern application and prospects of the stable isotopes  method for studying avian influenza A virus transmission   in migratory birds

https://doi.org/10.18470/1992-1098-2019-3-92-100

Abstract

Aim. The circulation and transmission of pathogens is a global biological phenomenon that is closely associated with bird migration. This analysis was carried out with  the aim of understanding and assessing the prospects of using the stable isotope  method to study the circulation and transmission of the avian influenza A virus via  migratory birds. 

Discussion. Insufficient data on the distances of migration of infected birds and their  interpopulational relationships leaves open the question of the transmission of highly pathogenic influenza viruses (HSV) in the wild bird population. A deeper study of  the role of migrations in the spread of HSV may possibly allow the more effective  investigation of the transmission of the viral pathogen between individuals at migration stopover sites and the clarification of global migration routes. New methodological approaches are providing a more complete picture of the geography and phenology of migrations, as well as of the consequences of migratory behavior for species biology. The study of the quantitative component of migratory flows based on  the analysis of the content of stable isotopes (SIMS) in bird tissues seems very promising. This method is being applied to the solution of various environmental issues,  including the study of animal migrations.   

Conclusion. Based on data from the scientific literature, it is shown that SIMS is  promising for the clarification of bird migration routes and the quantification of their  intensity. The resolving power of the method is sufficient to determine the migration  pathways of carriers of viral pathogens on the scale of zoogeographic subdomains  and in even further detail. However, to date, there have been few such studies: in  Russia they have not been conducted at all. The increased use of the SIMS methodology may possibly reveal new ways in which viral infections are spread via birds.  

About the Authors

O. R. Druzyaka
National Research Tomsk State University
Russian Federation


A. V. Druzyaka
Institute of Systematics and Ecology of Animals; Novosibirsk State University
Russian Federation


M. A. Gulyaeva
Novosibirsk State University; Federal Research Centre of Fundamental and  Translational Medicine
Russian Federation
2 Pirogova St, Novosibirsk,  Russia 630090; 2 Timakova St, Novosibirsk, Russia  30117


F. Huettmann
University of Alaska Fairbanks
Russian Federation
Fairbanks, Alaska


A. M. Shestopalov
Federal Research Centre of Fundamental and Translational Medicine
Russian Federation


References

1. Newton I. The migration ecology of birds. Elsevier, 2010, 984 p.

2. Rubenstein D.R., Hobson K.A. From birds to butterflies: animal movement patterns and stable isotopes. Trends in ecology & evolution, 2004, vol. 19, iss. 5, pp. 256‐263. Doi: 10.1016/j.tree.2004.03.017

3. Bianki V.V., Dobrynina I.N. Migrations of birds in Eastern Europe and North Asia. In: Plastinchatoklyuvyye. Rechnyye utki [Lamellar‐billed. River ducks]. Moscow, Nauka Publ., 1997, 320 p. (In Russian)

4. Veen J., Yurlov A.K., Delany S.N., Mihantiev A.I., Selivanova M.A., Boere G.C. An atlas of movements of Southwest Siberian waterbirds. Wetlands Internat., Wageningen, 2005, pp. 10‐17.

5. Webster M.S., Marra P.P., Haig S.M., Bensch S., Holmes R.T. Links between worlds: unraveling migratory connectivity. Trends in Ecology & Evolution, 2002, vol. 17, iss. 2, pp. 76‐83. Doi: 10.1016/S0169‐5347(01)02380‐1

6. Koblik E., Arkhipov V., Red'kin Ya. Spisok ptits Rossiyskoy federatsii [List of birds of the Russian Federation]. Litres, 2018, 256 p. (In Russian)

7. Chamberlain C.P., Blum J.D., Holmes R.T., Feng X.H., Sherry T.W., Graves G.R. The use of isotope tracers for identifying populations of migratory birds. Oecologia, 1996, vol. 109, iss. 1, pp. 132‐141. Doi: 10.1007/s004420050067

8. Hobson K.A., Wassenaar L.I. Linking breeding and wintering grounds of neotropical migrant songbirds using stable hydrogen isotopic analysis of feathers. Oecologia, 1997, vol. 109, iss. 1, pp. 142‐148. Doi: 10.1007/s004420050068

9. Inger R., Bearhop S. Applications of stable isotope analyses to avian ecology. Ibis, 2008, vol. 150, iss. 3, pp. 447‐461. Doi: 10.1111/j.1474‐919X.2008.00839.x

10. Webster R.G., Bean W.J., Gorman O.T., Chambers T.M., Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiology and molecular biology reviews. 1992, vol. 56, iss. 1, pp. 152‐179.

11. Reed K.D., Meece J.K., Henkel J.S., Shukla S.K. Birds, migration and emerging zoonoses: West Nile virus, Lyme disease, influenza A and enteropathogens. Clinical medicine and research. 2003, vol. 1, iss. 1, pp. 5‐12.

12. Mikheev A.V. Spatial structure of populations in birds. Russkiy ornitologicheskiy zhurnal [Russian Journal of Ornithology]. 2010, vol. 19, no. 592, pp. 1499‐1509. (In Russian)

13. De Marco M.A., Sharshov K., Gulyaeva M., Delogu M., Ciccarese L., Castrucci M. R., Shestopalov A. Chapter: Ecology of Avian Influenza Viruses in Siberia. Book: Siberia: Ecology, Diversity and Environmental Impact, Nova Science Pub Inc. 2016, 235 p.

14. Gavrilov E.I., Ravkin Yu.S. Migratsii ptits v Azii [Bird Migration in Asia]. Novosibirsk, Nauka Publ., 1986, 261 p. (In Russian)

15. Gaidet N., Cappelle J., Takekawa J.Y., Prosser D.J., Iverson S.A., Douglas D.C., Perry W.M., Mundkur T., Newman S.H. Potential spread of highly pathogenic avian influenza H5N1 by wildfowl: dispersal ranges and rates determined from large‐scale satellite telemetry. Journal of Applied Ecology, 2010, vol. 47, iss. 5, pp. 1147‐1157. Doi: 10.1111/j.13652664.2010.01845.x

16. Gulyaeva M.A., Sharshov K.A., Zaykovskaia A.V., Shestopalova L.V., Shestopalov A.M. Experimental infection and pathology of Clade 2.2 H5N1 virus in gulls. J Vet Sci., 2016, vol. 17, iss. 2, pp. 179‐188. Doi: 10.4142/jvs.2016.17.2.179

17. Takekawa J.Y., Newman S.H., Xiao X., Prosser D.J., Spragens K.A., Palm E.C., Yan B., Li T., Lei F., Zhao D., Douglas D.C., Muzaffar S.B., Ji W. Migration of waterfowl in the East Asian flyway and spatial relationship to HPAI H5N1 outbreaks. Avian Dis., 2010, vol. 54, 1 suppl., pp. 466‐476. Doi: 10.1637/8914‐043009‐Reg.1

18. Iverson S.A., Gavrilov A., Katzner T.E., Takekawa J.Y., Miller T.A., Hagemeijer W., Mundkur T., Sivananinthaperumal B., DeMattos C.C., Ahmed L.S., Newman S.H. Migratory movements of waterfowl in Central Asia and avian influenza emergence: sporadic transmission of H5N1 from east to west. Ibis, 2011, vol. 153, iss. 2, pp. 279‐292. Doi: 10.1111/j.1474919X.2010.01095.x

19. Cappelle J., Iverson S.A., Takekawa J.Y., Newman S.H., Dodman T., Gaidet N. Implementing telemetry on new species in remote areas: recommendations from a large‐scale satellite tracking study of African waterfowl. Ostrich, 2011, vol. 82, iss. 1, pp. 17‐26. Doi: 10.2989/00306525.2011.556786

20. Hobson K.A. Stable isotopes and the determination of avian migratory connectivity and seasonal interactions. The Auk, 2005, vol. 122, iss. 4, pp. 1037‐1048. Doi: 10.1093/auk/122.4.1037

21. Yuan‐Mou C., Hatch K.A., Ding T.S., Eggett D.L., Yuan H.W., Roeder B.L. Using stable isotopes to unravel and predict the origins of great cormorants (Phalacrocorax carbo sinensis) overwintering at Kinmen. Rapid Communications in Mass Spectrometry, 2008, vol. 22, iss. 8, pp. 1235‐1244. Doi: 10.1002/rcm.3487

22. Wunder M.B., Kester C.L., Knopf F.L., Rye R.O. A test of geographic assignment using isotope tracers in feathers of known origin. Oecologia, 2005, vol. 144, iss. 4, pp. 607‐617. Doi: 10.1007/s00442‐005‐0071‐y

23. Kelly J.F., Johnson M.J., Langridge S., Whitfield M. Efficacy of stable isotope ratios in assigning endangered migrants to breeding and wintering sites. Ecol. Appl., 2008, vol. 18, iss. 3, pp. 568‐576.

24. Hallworth M.T., Marra P.P. Miniaturized GPS Tags Identify Non‐breeding Territories of a Small Breeding Migratory Songbird. Scientific Reports, 2015, vol. 5, pp. 1106‐1109. Doi: 10.1038/srep11069

25. Hill N.J., Takekawa J.Y., Ackerman J.T., Hobson K.A., Herring G., Cardona C.J., Runstadler J.A., Boyce W.M. Migration strategy affects avian influenza dynamics in mallards (Anas platyrhynchos). Molecular Ecology, 2012, vol. 21, iss. 24, pp. 5986‐5999. Doi: 10.1111/j.1365‐294X.2012.05735.x

26. Guillemain M., van Wilgenburg S.L., Legagneux P., Hobson K.A. Assessing geographic origins of Teal (Anas crecca) through stable‐hydrogen (δ 2H) isotope analyses of feathers and ring‐recoveries. Journal of Ornithology, 2014, vol. 155, iss. 1, pp. 165‐172. Doi: 10.1007/s10336‐013‐0998‐4

27. Fox A.D., Hobson K.A., de Jong A., Kardynal K.J., Koehler G., Heinicke T. Flyway population delineation in Taiga Bean Geese Anser fabalis fabalis revealed by multi‐element feather stable isotope analysis. Ibis, 2017, vol. 159, iss. 1, pp. 66‐75. Doi: 10.1111/ibi.12417

28. Michener R.H., Lajtha K. Stable isotopes in ecology and environmental science. Blackwell Pub., 2007, 591 p.

29. Viljoen G.J., Luckins A.G., Naletoski I. Stable Isotopes to Trace Migratory Birds and to Identify Harmful Diseases. Springer, 2016, 43 p.

30. Ekaykin A.A. Stabil'nye izotopy vody v glyatsiologii i paleogeografii [Stable water isotopes in glaciology and paleogeography]. St. Petersburg, AARI Publ., 2016, 63 p. (In Russian)

31. Rubenstein D.R., Hobson K.A. From birds to butterflies: animal movement patterns and stable isotopes. Trends in ecology & evolution, 2004, vol. 19, iss. 5, pp. 256‐263. Doi: 10.1016/j.tree.2004.03.017

32. Hobson K.A. Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia, 1999, vol. 120, iss. 3, pp. 314‐326. Doi: 10.1007/s004420050865

33. Wassenaar L.I., Hobson K.A. Improved Method for Determining the Stable‐Hydrogen Isotopic Composition (δD) of Complex Organic Materials of Environmental Interest. Environ. Sci. Technol., 2000, vol. 34, iss. 11, pp. 2354‐2360. Doi: 10.1021/es990804i

34. Bearhop S., Waldron S., Votier S.C., Furnesset R.W. Factors that influence assimilation rates and fractionation of nitrogen and carbon stable isotopes in avian blood and feathers. Physiol. Biochem. Zool., 2002, vol. 75, iss. 5, pp. 451458. Doi: 10.1086/342800

35. Schaffner F.C., Swart P.K. Influence of diet and environmental water on the carbon and oxygen isotopic signatures of seabird eggshell carbonate. Bulletin of Marine Science. 1991, vol. 48, iss. 1, pp. 23‐38.

36. Vogel J.C., Eglington B., Auret J.M. Isotope fingerprints in elephant bone and ivory. Nature, 1990, vol. 346, pp. 747‐749. Doi: 10.1038/346747a0

37. Fry B. Fish and shrimp migrations in the northern Gulf of Mexico analyzed using stable carbon and nitrogen and sulfur isotope ratios. US Natl Mar Fish Serv Bull., 1984, vol. 81, iss. 4, pp. 789‐802.

38. Terzer S., Wassenaar L.I., Araguás‐Araguás L.J., Aggarwal P.K. Global isoscapes for δ18 O and δ2 H in precipitation: improved prediction using regionalized climatic regression models. Hydrology and Earth System Sciences, 2013, vol. 17, iss. 11, pp. 4713‐4728. Doi: 10.5194/hess‐17‐4713‐2013


Review

For citations:


Druzyaka O.R., Druzyaka A.V., Gulyaeva M.A., Huettmann F., Shestopalov A.M. Modern application and prospects of the stable isotopes  method for studying avian influenza A virus transmission   in migratory birds. South of Russia: ecology, development. 2019;14(3):92-100. (In Russ.) https://doi.org/10.18470/1992-1098-2019-3-92-100

Views: 986


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1992-1098 (Print)
ISSN 2413-0958 (Online)