Preview

South of Russia: ecology, development

Advanced search

Agroecological assessment of the effectiveness of irrigation  of tomato using electrolyzed water

https://doi.org/10.18470/1992-1098-2019-3-61-70

Abstract

Aim. The purpose of the research is to quantify the agroecological response of  plants and the bio‐productivity of crops to irrigation using electrochemical water  treatment technology.   

Material and Methods. The study was carried out using the tomato (Solanum lycoparsicum, hybrid Pink Paradise F1) in a protected ground culture as an example. The  experimental site is located in the dry‐steppe zone of light chestnut soils of the  Lower Volga region (48о56΄46˝N44о51΄45˝E). The magnitude of the electrochemically initiated shift of the redox potential of irrigation water and the options for  combining the use of electrochemically treated water were taken as variable experimental factors.   

Results. It was established that the magnitude of the electrochemically initiated  shift of the redox potential of irrigation water has a predominant effect on the estimated biometric indicators: the coefficient of variation of the indicators for this  factor reached 9.5‐38.0%. The influence of the method of using electrochemically  treated water is estimated at 4.12‐10.24%, but regarding net assimilation the significance of this factor is not statistically proven. The highest estimates of linear  growth – 2.21 m, maximum leaf area – 43.4 thousand m2/ha, accumulated biomass  – 13.39 t/ha, photosynthetic potential – 3617 thousand m2 days/ha and tomato  biological yield – 140.0 t/ha, obtained by the combined use of a catholyte for vegetation and fertilizer irrigation with an electrochemically initiated shift of the redox  potential (‐500) mV.   

Conclusion. The studies have proved the statistical significance of the biometric  response of tomato plants to the use of water with electrochemically altered redox  potential for vegetation and fertilizer irrigation.   

About the Authors

S. Ya. Semenenko
Federal Research Centre for Agroecology, Integrated Land Improvement and Protective Afforestation
Russian Federation


M. N. Lytov
Federal Research Centre for Agroecology, Integrated Land Improvement and Protective Afforestation
Russian Federation

Laboratory of Soilprotective Irrigation Technologies and  Information Systems for Water Regime  Management, Volga Scientific Research  Institute of Ecological Reclamation Technologies

 21 Trekhgornaya St, Volgograd, Russia 400012



A. N. Chushkin
Federal Research Centre for Agroecology, Integrated Land Improvement and Protective Afforestation
Russian Federation


E. I. Chushkina 
Federal Research Centre for Agroecology, Integrated Land Improvement and Protective Afforestation
Russian Federation


References

1. Sukachev V.N. Izbrannye trudy. Problemy fitotsenologii [Selected Works. Phytocenology problems]. Leningrad, Nauka Publ., 1975, vol. 3, 543 p. (In Russian)

2. Shennan C. Biotic interactions, ecological knowledge and agriculture. Proceedings of the Royal Society B: Biological Sciences, 2008, vol. 363, iss. 1492, pp. 717‐739. Doi: 10.1098/rstb.2007.2180

3. Izaurralde R.C., Williams J.R., McGill W.B., Rosenberg N.J., Jakas M.C.Q. Simulating soil c dynamics with epic: model description and testing against long‐term data. Ecological Modelling, 2006, vol. 192, iss. 3‐4, pp. 362‐384. Doi: 10.1016/j.ecolmodel.2005.07.010

4. Boyko A.P. Agrotsenoz kak element antropogeneza pochv [Agrocenosis as an element of soil anthropogenesis]. Ussuriisk, Primorskaya gosudarstvennaya sel’skokhozyaystvennaya akademiya Publ., 2003, 114 p. (In Russian)

5. Tarkhanov O.V. Ecology and agrocenosis. How to transform the ecosystem "rural economy" into a stable basis of the country. Ekologiya i zhizn’ [Ecology and Life]. 2011, no. 2, pp. 12‐19. (In Russian)

6. Filatov G.V., SHevchenko V.E., Verzilina N.D. Fiziologicheskaya genetika produktsionnykh protsessov sel'skokhozyaistvennykh rastenii [Physiological genetics of production processes of agricultural plants]. Voronezh, VSAU Publ., 2003, 249 p. (In Russian)

7. Murren C.J., Maclean H.J., Diamond S.E., Steiner U.K., Heskel M.A., Handelsman C.A., Ghalambor C.K., Auld J.R., Callahan H.S., Pfennig D.W., Relyea R.A., Schlichting C.D., Kingsolver J. Evolutionary change in continuous reaction norms. The American Naturalist, 2014, vol. 183, iss. 4, pp. 453‐467. Doi: 10.1086/675302

8. Vítolo H.F., Souza G.M., Silveira J.A.G. Сross‐scale multivariate analysis of physiological responses to high temperature in two tropical crops with C3 and C4 metabolism. Environmental and Experimental Botany, 2012, vol. 80, pp. 54‐62. Doi: 10.1016/j.envexpbot.2012.02.002

9. Del Río LA ROS and RNS in plant physiology: an overview. Journal of Experimental Botany, 2015, vol. 66, iss. 10, pp. 2827‐2837. Doi: 10.1093/jxb/erv099

10. Malyarovskaya V.I. Variability of morphometric parameters in naturalized and cultivated Hydrangea macrophylla Ser. plants under different environmental conditions. Agricultural Biology, 2015, vol. 50, no. 1, pp. 92‐98. (In Russian) Doi: 10.15389/agrobiology.2015.1.92rus

11. Aydarov I.P. Ecological and economic efficiency of farmland reclamation. Ekonomika sel’skogo khozyaystva Rossii [Economics of Agriculture of Russia]. 2011, no. 9, pp. 77‐89. (In Russian)

12. Aver’yanov S.F. Upravleniye vodnym rezhimom melioriruyemykh sel’skokhozyaystvennykh zemel’ [Water management of reclaimed agricultural land]. Moscow, Russian State Agrarian University ‐ Moscow Timiryazev Agricultural Academy Publ., 2015, 542 p. (In Russian)

13. Man J., Shi Y., Yu Z., Zhang Y. Root growth, soil water variation, and grain yield response of winter wheat to supplemental irrigation. Plant Production Science, 2016, vol. 19, iss. 2, pp. 193‐205. Doi: 10.1080/1343943X.2015.1128097

14. Rinaldi M., He Z. Chapter Six ‐ Decision Support Systems to Manage Irrigation in Agriculture. Advances in Agronomy, 2014, vol. 123, pp. 229‐279. Doi: 10.1016/B978‐0‐12‐420225‐2.00006‐6

15. da Silva C.R., Folegatti M.V., da Silva T.J.A., Alves Júnior J., Souza C.F., Ribeiro R.V. Water relations and photosynthesis as criteria for adequate irrigation management in 'Tahiti' lime trees. Scientia Agricola, 2005, vol. 62, no. 5, pp. 415‐422. Doi: 10.1590/S0103‐90162005000500001

16. Semenenko S., Lytov M., Borodychev V., Ivantsova E. Yielding capacity and quality of tomato fruits at drip irrigationwith water with modified oxidation‐reduction potential. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM 15th, 2015, pp. 1055‐1062.

17. Pasko O. Growth and development of plants, stimulated electrochemically activated water. Vestnik Buryatskoy gosudarstvennoy sel’skokhozyaystvennoy akademii imeni V.R. Filippova [Bulletin of Buryat State Academy of Agriculture]. 2010, no. 3 (20), pp. 54‐59. (In Russian)

18. Egorov V.V., Kordonskaya M.A., Kondakov A.M. The dependence of bimolecular reaction in activated water on concentration and temperature. Veterinariya, zootekhniya i biotekhnologiya [Veterinary, zoo and biotechnology]. 2015, no. 10, pp. 65‐67. (In Russian)

19. Sudachenko V.N., Markova A.E., Ivanova I.I. [Efficiency of use of mineral fertilizer solutions on activated water in protected ground conditions]. In: Tekhnologii i tekhnicheskiye sredstva mekhanizirovannogo proizvodstva produktsii rasteniyevodstva i zhivotnovodstva [Technologies and technical means of mechanized production of plant and animal production]. 2003, no. 74, pp. 110‐118. (In Russian)

20. Cojocaru A.F., Cоjocaru N.L. Mechanisms of Action of Electrochemically Activated Solutions and Water on the Germination Rate of Seeds. Biomeditsinskaya radioelektronika [Biomedical Radioelectronics]. 2008, no. 12, pp. 27‐40. (In Russian)

21. Aleksandrova E.A., Shramko G.A., Knyazeva T.V. Improvement of foliar feeding of winter wheat using electrochemically activated water. Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta [Proceedings of the Kuban State Agrarian University]. 2011, no. 33, pp. 69‐72. (In Russian)

22. Semenenko S.Ya. Chushkin A.N., Lytov M.N., Chushkina E.I. Proyektirovaniye sistem kapel’nogo orosheniya s modulem elektrokhimicheskoy aktivatsii vody [Design of drip irrigation systems with water electrochemical activation module]. Volgograd, Agroecology of RAS Publ., 2018, 182 p. (In Russian)

23. Dospekhov B.A. Metodika polevogo opyta [Field experience]. Moscow, Agropromizdat Publ., 1983, 351 p. (In Russian)

24. Litvinov S.S. Metodika polevogo opyta v ovoshchevodstve [Methods of field experience in vegetable growing]. Moscow, All‐Russian Scientific Research Institute of Horticulture Publ., 2011, 648 p. (In Russian)

25. Kuznetsova E.I., Aleshchenko M.G., Zakabunina E.N. Metody polevykh, vegetatsionnykh i lizimetricheskikh issledovaniy v agronomii [Methods of field, vegetation and lysimetric studies in agronomy]. Moscow, Russian Agrarian Correspondence University Publ., 2010, 130 p. (In Russian)

26. Avdeev V.I. Sovremennyye metody biometrii v issledovanii rasteniy [Modern methods of biometrics in the study of plants]. Orenburg, Orenburg state agrarian university Publ., 2015, 128 p. (In Russian)

27. Atramentova LA, Utevskaya OM. Statisticheskiye metody v biologii [Statistical methods in biology]. Gorlovka, «Vidavnitstvo Likhtar» Publ., 2008, 248 p. (In Russian)

28. Rao G. Nageswara. Statistics for Agricultural Sciences. BS Publications, 2007, 466 p.


Review

For citations:


Semenenko S.Ya., Lytov M.N., Chushkin A.N., Chushkina  E.I. Agroecological assessment of the effectiveness of irrigation  of tomato using electrolyzed water. South of Russia: ecology, development. 2019;14(3):61-70. (In Russ.) https://doi.org/10.18470/1992-1098-2019-3-61-70

Views: 738


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1992-1098 (Print)
ISSN 2413-0958 (Online)