1. GOST 31868-2012. Voda. Metody opredeleniya tsvetnosti. M.: Standartinform, 2012. 7 s.
2. Domashchenko D.V., Nikulin E.E. Prognozirovanie ryadov dinamiki rynochnykh indikatorov na osnove nelineinoi avtoregressionnoi neironnoi seti // Statistika i ekonomika. 2017. N 3. S. 4-9. https://doi.org/10.21686/2500-3925-2017-3-4-9
3. Trufanov A.I. Formirovanie zhelezistykh podzemnykh vod. Moskva: Nauka, 1982. 131 s.
4. Vasil'chuk T.A., Osipenko V.P. Komponentnyi sostav rastvorennykh organicheskikh veshchestv prirodnykh poverkhnostnykh vod s vysokoi tsvetnost'yu // Gidrologiya, gidrokhimiya i gidroekologiya. 2010. T. 3. N 20. C. 136-141.
5. Kryuchin O.V., Kozadaev A.S., Dudakov V.P. Prognozirovanie vremennykh ryadov s pomoshch'yu iskusstvennykh neironnykh setei i regressionnykh modelei na primere prognozirovaniya kotirovok valyutnykh par // Issledovano v Rossii. 2010. N 30. URL: https://s3.amazonaws.com/academia.edu.documents/30915193/030.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1537347148&Signature=mn85sr3INFbxVkypvElCbl/B/BU=&response-content-disposition=inline; filename=30915193.pdf (data obrashcheniya: 19.09.2018)
6. Serikov L.V., Shiyan L.N., Tropina E.A., Khryapov P.A. Tsvetnost' podzemnykh vod Zapadno-Sibirskogo regiona // Izvestiya Tomskogo politekhnicheskogo universiteta. 2009. N 3. S. 54-58.
7. Zhigalova A.V., Kantor I.V., Vozhdaeva M.Yu., Kantor E.A. Vliyanie popuskov Pavlovskogo vodokhranilishcha na mutnost' i tsvetnost' v stvorakh vodozaborov goroda Ufy // Materialy XIX Mezhdunarodnoi molodezhnoi nauchno-prakticheskoi konferentsii «Nauchnye issledovaniya i razrabotki molodykh uchenykh», Novosibirsk, 16-17 iyunya, 2017. S. 67-71.
8. Yalaletdinova A.V., Enikeeva L.V., Vozhdaeva M.Yu., Kantor E.A. Statisticheskie kharakteristiki vzaimosvyazi mutnosti i raskhodov vody v reke, vyzvannykh popuskami vodokhranilishcha // Teoreticheskaya i prikladnaya ekologiya. 2018. N 1. S. 33-42.
9. Potylitsyna E.N., Lipinskii L.V., Sugak E.V. Ispol'zovanie iskusstvennykh neironnykh setei dlya resheniya prikladnykh ekologicheskikh zadach // Sovremennye problemy nauki i obrazovaniya. 2013. N 4. S. 1-8. URL: https://www.scienceeducation.ru/ru/article/view?id=9779 (data obrashcheniya: 17.08.2018)
10. Kurunç A., Yürekli K., Çevik O. Performance of two stochastic approaches for forecasting water quality and streamflow data from Yeşilιrmak River, Turkey // Environmental Modelling & Software. 2005. Vol. 20. Iss. 9. P. 1195-1200. https://doi.org/10.1016/j.envsoft.2004.11.001
11. Hernández N., Camargo J., Moreno F., Plazas-Nossa L., Torres A. Arima as a forecasting tool for water quality time series measured with UV-Vis spectrometers in a constructed wetland // Tecnología y Ciencias del Agua. 2017. V. 8. N 5. P. 127-139. https://doi.org/10.24850/j-tyca-2017-05-09
12. Park S.-H., Koo J. Sedimentation Process Modeling using Transfer Function ARIMA for Water Quality Diagnosis and Prediction // Advanced Science and Technology Letters. 2015. V. 99. N 1. P. 97-100. https://doi.org/10.14257/astl.2015.99.24
13. Bakhvalov N.S., Zhidkov N.P., Kobel'nikov G.M. Chislennye metody. Moskva: BINOM. Laboratoriya znanii, 2006. 636 s.
14. Jiang C., Song F. Sunspot Forecasting by Using Chaotic Time-series Analysis and NARX Network // Journal of Computers. 2011. V. 6. Iss. 7. P. 1424-1429. https://doi.org/10.4304/jcp.6.7.1424-1429
15. Sarkar A., Pandey P. River Water Quality Modelling using Artificial Neural Network Technique // Aquatic Procedia. 2015. V. 4. P. 1070-1077. https://doi.org/10.1016/j.aqpro.2015.02.135
16. Khandelwal I., Adhikari R., Verma G. Time Series Forecasting Using Hybrid ARIMA and ANN Models Based on DWT Decomposition // Procedia Computer Science. 2015. V. 48. P. 173- 179. https://doi.org/10.1016/j.procs.2015.04.167
17. Babu C.N., Reddy B.C. A moving-average filter based hybrid ARIMA-ANN model for forecasting time series data // Applied Soft Computing. 2014. V. 23. P. 27-38. https://doi.org/10.1016/j.asoc.2014.05.028
18. Araya F.K., Zhang L. Time series analysis of water quality parameters at Stillaguamish River using order series method // Stochastic Environmental Research and Risk Assessment. 2015. V. 29. Iss. 1. P. 227-239. https://doi.org/10.1007/s00477-014-0907-2
19. Mironovskaya A.V., Unguryanu T.N., Gudkov A.B. Rol' prirodno-klimaticheskikh i ekologicheskikh faktorov v vozniknovenii neotlozhnykh sostoyanii serdechno-sosudistoi sistemy: analiz vremennogo ryada // Ekologiya cheloveka. 2010. N 9. S. 13-17.
20. Kiryukhin V.K., Mel'kanovitskaya S.G., Shvets V.M. Opredelenie organicheskikh veshchestv v podzemnykh vodakh. M.: Nedra, 1976. 192 s.
21. Darrat A.F., Zhong M. On testing the random walk Hypothesis: A model-comparison approach // Financial Review. 2000. V. 35. Iss. 3. P. 105-124. https://doi.org/10.1111/j.1540-6288.2000.tb01423.x
22. Olden J.D. An artificial neural network approach for studying phytoplankton succession // Hydrobiologia. 2000. V. 436. Iss. 1-3. P. 131-143.