Preview

South of Russia: ecology, development

Advanced search

WATER RELATION FEATURES OF NERIUM OLEANDER L. UNDER PROGRESSIVE SOIL DROUGHT STRESS

https://doi.org/10.18470/1992-1098-2018-1-101-115

Abstract

Abstract. Aim. Study the ecophysiological reaction of Nerium oleander L. on effect of progressive soil drought. Estimate the optimal and threshold values of environmental factors limiting photosynthesis rate of Nerium oleander L. plants. Materials and Methods. As the research materials, were used the young plants of Nerium oleander L. For continuous automatic recording of CO2/H2O gas exchange of intact leaves we used PTM-48A Photosynthesis Monitor. Results. It was established that N.oleander begins sense a water stress deficit during the critical period of active growth by reducing soil moisture content up to 35% field capacity (FC). Net photosynthesis (PN) and stomata conductance (gs) decreased under progressive soil drought stress and dropped to zero under condition: soil water beneath 2-4%VWC (6-11% FC) during more than 24 hours, leaves temperature – more than 37°C and PAR – more than 1300-1700 µmol/(m2 s). Optimal light and temperature conditions for intensive growth: leaf temperature from 23 to 36.5°C, light regime: full sunlight in the range PAR 850-1600 µmol/(m2 s) when soil moisture 45-75% FC. Conclusion. Genotypic characteristics of N. oleander plants in supporting optimal on accordance with the environmental conditions water balance were determined. One of the specific adaptation reaction for N. oleander to extreme drought conditions in case of complex influence of water stress (soil water content at level of wilting range (<6% FC) during more than 48 hours), high levels of irradiance and overheating is the accelerated senescence and exfoliation not only old but also young leaves resulting in the loss of ornamental value cultivar.

About the Authors

Svetlana P. Korsakova
Nikita Botanical Gardens – National Scientific Center RAS.
Russian Federation
Yalta.


Yuriy V. Plugatar
Nikita Botanical Gardens – National Scientific Center RAS.
Russian Federation
Yalta.


Oleg A. Ilnitsky
Nikita Botanical Gardens – National Scientific Center RAS.
Russian Federation
Yalta.


Emil I. Kleiman
Bio Instruments S.R.L.
Moldova, Republic of
Kishinev.


References

1. Maleeva O.F. Nikita Gardens in the time of Steven (1812-1824 yrs.). Zapiski Nikitskogo botanicheskogo sada [Notes of Nikita Botanical Gardens]. 1931, vol. 17, no. 1, pp. 25–28. (In Russian)

2. Leyba V.G., Karpun Yu.N. Nerium oleander culture at the Abkhazian. Subtropicheskoye i dekorativnoye sadovodstvo [Subtropical and ornamental plants]. 2008, vol. 41, pp. 93–100. (In Russian)

3. Spotar E.N. Regenerative pruning peculiarities of Nerium oleander cultivars within South Coast of the Crimea. Byulleten' GNBS [Bulletin SNBG]. 2015, iss. 116, pp. 58–66. (In Russian)

4. Lenzi A., Pittas L., Martinelli T., Lombardi P., Tesi R. Response to water stress of some oleander cultivars suitable for pot plant production. Scientia Horticulturae, 2009, vol. 122, pp. 426–431. DOI: 10.1016/j.scienta.2009.05.022

5. Mamedov T.S., Gyulmamedova Sh.A. Perspective plants in using of creating compositions in Absheron. ScienceRise. Biological science, 2016, no. 2, pp. 34– 40. (In Russian) Available at: http://nbuv.gov.ua/UJRN/texcsrb_2016_2_7. (accessed 20.06.2017)

6. Lombardi P., Lenzi A., Tesi R. Cultivar di oleandro (Nerium oleander L.) a taglia contenuta per vasi fioriti. Colture Protette. 2003, vol. 4, pp. 75–80.

7. Ilnitsky O.A., Plugatar YU.V., Korsakova S.P., Kovalyov M.S., Pashtetsky A.V. Correlation between drought resistance of Nerium Oleander L. and environmental factors under conditions of South coast of the Crimea. In: Sbornik nauchnykh trudov GNBS [Works of the State Nikitа Botanical Gardens]. Yalta, 2016, vol. 142, pp. 139–149. (In Russian)

8. Meletiou-Christou M.-S., Rhizopoulou S. Leaf functional traits of four evergreen species growing in Mediterranean environmental conditions. Acta Physiologiae Plantarum, 2017, vol. 39, no. 1, pp. 34-46. DOI: 10.1007/s11738-016-2330-4

9. Molisch H., Fulling E. H. The longevity of plants (Die Lebensdauer der Pflanze). Translator, New York. The Science Press Printing Company. Lancaster, Pennsylvania, USA, 1938, 226 p.

10. Vasfilov S.P. Influence of photosynthetic parameters on leaf longevity. Zhurnal Obshchei Biologii [Biology Bulletin Reviews]. 2015, vol. 76, iss. 3, pp. 225–243. (In Russian)

11. Chaves M.M., Maroco J.P., Pereira J.S. Understanding plant response to drought: from genes to the whole plant. Functional Plant Biology, 2003, vol. 30, iss. 3. pp. 239–264. doi: 10.1071/FP02076

12. Gollan T., Turner N.C., Schulze E.D. The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content. III. In the sclerophyllous woody species Nerium oleander L. Oecologia. 1985, vol. 65, iss. 3, pp. 356–62.

13. Genkel P.A. Fiziologiya zharo- i zasukhoustoychivosti rasteniy [Physiology of plant high temperature and drought resistance]. Moscow, Nauka Publ., 1982, 280 p. (In Russian)

14. Mao Z., Jiang H., WangYu., Zu Yu., Voronin P.Yu. Water Balance of Birch and Larch Leaves and Their Resistance to Short and Progressive Soil Drought. Fiziologiya Rastenii [Russian Journal of Plant Physiology]. 2004, vol. 51, no. 5, pp. 773–777. (In Russian)

15. Balaur N.S., Vorontsov V.A., Kleiman E.I., Ton Yu.D., Novel technique for component monitoring of CO2 exchange in plants. Fiziologiya Rastenii [Russian Journal of Plant Physiology]. 2009, vol. 56, no. 3, pp. 466–470. (In Russian)

16. Drozdov S.N., Kholoptseva E.S. Possibility of using multifactor experiments in study of plants’ ecological and physiological characteristics. Uchenyie zapiski Petrozavodskogo gosudarstvennogo universiteta [Proceedings of Petrozavodsk State University]. 2013, no. 2 (131). pp. 11–15. (In Russian)

17. Badger M.R., Björkman O., Armond P.A. An analysis of photosynthetic response and adaptation to temperature in higher plants: temperature acclimation in the desert evergreen. Nerium oleander L. Plant, Cell & Environ, 1982, vol. 5, iss. 1, pp. 85–99. doi: 10.1111/1365-3040.ep11587620

18. Yamori W., Noguchi K., Kashino Y., Terashima I. The Role of Electron Transport in Determining the Temperature Dependence of the Photosynthetic Rate in Spinach Leaves Grown at Contrasting Temperatures. Plant Cell Physiol, 2008, vol. 49, no. 4, pp. 583–591. doi: 10.1093/pcp/pcn030

19. Medrano H., Escalona J.M., Bota J., Gulias J., Flexas J. Regulation of Photosynthesis of C3 Plants in Response to Progressive Drought: Stomatal Conductance as a Reference Parameter. Annals of Botany, 2002, vol. 89, iss. 7, pp. 895–905. doi: 10.1093/aob/mcf079

20. Larcher W. Ekologiya rasteniy [Plant ecology]. Moscow, Мir Publ., 1978, 184 p. (In Russian)

21. Garmash E.V. Mitochondrial respiration of the photosynthesizing cell. Fiziologiya Rastenii [Russian Journal of Plant Physiology]. 2016, vol. 63, no. 1, pp. 17– 30. DOI: 10.7868/S001533031506007X (In Russian)

22. Rahmankulova Z.F. Levels of energy metabolism regulation in plants. Vestnik Bashkirskogo universiteta [Bulletin of Bashkir University]. 2009, vol. 14, no. 3-1, pp. 1141–1154. (In Russian)

23. Hurry V., Igamberdiev A.U., Keerberg O., Parnik T., Atkin O., Zaragoza-Castells J., Gardestrom P. Respiration in Photosynthetic Cells: Gas Exchange Components, Interactions with Photorespiration and the Operation of Mitochondria in the Light. In Plant Respiration: From Cell to Ecosystem (eds. H. Lambers and M. Ribas-Carbo). Berlin, Springer-Verlag, 2005. pp. 43–61.

24. Betti M., Bauwe H., Busch F.A., Fernie A.R., Keech O., Levey M., Ort D.R., Parry M.A.J., Sage R., Timm S., Walker B., Weber A.P.M. Manipulating photorespiration to increase plant productivity: recent advances and perspectives for crop improvement. Journal of Experimental Botany, 2016, vol. 67, no. 10, pp. 2977–2988. doi: 10.1093/jxb/erw076

25. Rahmankulova Z.F. Energy balance of a plant under normal and unfavourable conditions. Zhurnal obshchey biologii [Biology Bulletin Reviews]. 2002, vol. 63, no. 3, pp. 239–248. (In Russian)

26. Li J., Hu J. Using Co-Expression Analysis and Stress-Based Screens to Uncover Arabidopsis Peroxisomal Proteins Involved in Drought Response. PLoSOne, 2015, vol. 10, no. 9, e0137762. doi:10.1371/journal.pone.0137762. Available at: http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0137762&type=printable. (accessed 20.06.2017).

27. Agius S.C., Bykova N.V., Igamberdiev A.U., Moller I.M. The internal rotenone-insensitivae NADPH dehydrogenase contributes to malate oxidation by potato tuber and pea leaf mitochondria. Physiologia Plantarum. 1998, vol. 104, iss. 3, pp. 329–336.


Review

For citations:


Korsakova S.P., Plugatar Yu.V., Ilnitsky O.A., Kleiman E.I. WATER RELATION FEATURES OF NERIUM OLEANDER L. UNDER PROGRESSIVE SOIL DROUGHT STRESS. South of Russia: ecology, development. 2018;13(1):101-115. (In Russ.) https://doi.org/10.18470/1992-1098-2018-1-101-115

Views: 2476


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1992-1098 (Print)
ISSN 2413-0958 (Online)