

ЭКОЛОГИЯ РАСТЕНИЙ

Экология растений / Ecology of plants Оригинальная статья / Original article УДК 582.711.71:577.16 (470.325) DOI: 10.18470/1992-1098-2017-2-112-119

ЗАВИСИМОСТЬ СОДЕРЖАНИЯ ВИТАМИНОВ В ОРГАНАХ GEUM URBANUM И GEUM RIVALE (GEUM, ROSACEAE) ОТ РИТМА СЕЗОННОГО РАЗВИТИЯ

Татьяна В. Бурченко

Белгородский педагогический колледж, Белгород, Россия, tanya.burchenko@yandex.ru

Резюме. *Цель.* Установить оптимальные сроки накопления витаминов органами гравилатов в зависимости от ритмов их сезонного развития. *Методы.* Метод определения витамина С основан на способности аскорбиновой кислоты восстанавливать в кислой среде индикатор синего цвета — 2,6 - дихлорфенолиндофенол — до лейкоформы, при этом аскорбиновая кислота окисляется в дегидроаскорбиновую кислоту. Определение витаминов А и Е осуществлялся путём обращёно-фазной высокоэффективной жидкостной хроматографии. *Результаты.* Установлено, что наибольшие показатели содержания витаминов А и Е в листьях G. urbanum и G. rivale наблюдаются в июле. В корневищах гравилатов максимальная концентрация витаминов А и Е отмечается в марте в период их интенсивного отрастания, витамина С - в январе. Снижение обеспеченности корневищ растений витаминами А и Е продолжается в осенний период, витамином С - ранней весной. В соцветиях в начале цветения *G. rivale* L. и *G. urbanum* L. отмечается наибольшее содержание витамина А, к концу цветения накапливаются более интенсивно витамины Е и С. *Заключение*. Витамины А, Е, С в листьях зимующих растений G. urbanum L. и G. rivale L. сохраняются в условиях низких температур под снежным покровом и не подвержены значительному разрушению. В период зимнего покоя содержание витамина С в корнях достигает максимума.

Ключевые слова: *Geum rivale* L., *Geum urbanum* L., витамины, корни, соцветия, листья, полезные свойства.

Формат цитирования: Бурченко Т.В. Зависимость содержания витаминов в органах Geum urbanum и Geum rivale (Geum, Rosaceae) от ритма сезонного развития // Юг России: экология, развитие. 2017. Т.12, N2. С.112-119. DOI: 10.18470/1992-1098-2017-2-112-119

DEPENDENCE OF VITAMIN CONTENT IN THE GEUM URBANUM AND GEUM RIVALE (GEUM, ROSACEAE) ORGANS ON THE RHYTHM OF SEASONAL DEVELOPMENT

Tatiana V. Burchenko

Belgorod Teachers College, Belgorod, Russia, tanya.burchenko@yandex.ru

Abstract. The *aim* of the research is to determine the optimal terms of the accumulation of vitamins by the organs of Geum depending on the rhythms of their seasonal development. *Methods*. The method for determining the vitamin C is based on the ability of ascorbic acid to change the color to blue in the acidic medium - 2,6 - dichlorophenolindophenol - to the leucoform, while ascorbic acid is oxidized to dehydroascorbic acid. Determination of vitamins A and E was carried out by reversed-phase high-performance liquid chromatography. *Results*. It was found that the highest indices of vitamin A and E in the leaves of *G. urbanum* and *G. rivale* are

observed in July. In the rhizomes of avens, the maximum concentration of vitamins A and E is observed in March during their intensive growth, vitamin C in January. Decrease in the supply of rhizomes of plants with vitamins A and E continues in the autumn period, while for the vitamin C it is observed in the early spring. In the inflorescences, at the beginning of flowering, *G. rivale L.* and *G. urbanum L.* are characterized by the greatest content of vitamin A; by the end of flowering, vitamins E and C are accumulated more intensively. *Conclusion*. The leaves of wintering plants of *G. urbanum L.* and *G. rivale L.* continue to contain vitamins A, E, C despite low temperatures under snow cover and are not subject to significant destruction. During the winter rest period, the content of vitamin C in the roots reaches a maximum.

Keywords: Geum rivale L., Geum urbanum L., vitamins, roots, inflorescences, leaves, useful properties.

For citation: Burchenko T.V. Dependence of vitamin content in the Geum urbanum and Geum rivale (Geum, rosaceae) organs on the rhythm of seasonal development. *South of Russia: ecology, development.* 2017, vol. 12, no. 2, pp. 112-119. (In Russian) DOI: 10.18470/1992-1098-2017-2-112-119

ВВЕДЕНИЕ

Витамины являются низкомолекулярными органическими соединениями различной химической природы, выполняющими важнейшие биохимические и физиологические функции. Они являются активными группами ферментативных систем. Витамин С синтезируется во всех органах растения. Его исходным соединением является глюкоза. Он является регулятором активности ферментов. Провитамин А (В-каротин) синтезируется в хлоро- и хромопластах, участвует в процессах роста и размножения растений. Витамин Е относится к соединениям ароматического ряда. Синтезируется в листьях. Он необходим для окисления кислорода воздуха, предохраняет липиды мембран от разрушения [1].

Особую важность имеет достаточное количество витаминов для протекания биохимических и физиологических процессов: их недостаток ведёт к нарушению функции клеточных ферментов и обмена веществ [2].

Гравилат – моноподиально-розеточное растение сем. Rosaceae. G. urbanum и G. rivale во взрослом состоянии представляют собой «архитектурную модель»: на многолетнем моноподиально нарастающем вегетативном побеге образуются монокарпические побеги-цветоносы. Листья в течение вегетационного периода не остаются постоянными, они отличаются не только по форме, но и по характеру пазушных почек. Явление перезимовки обоих видов с зелёными листьями характерно для них как для зимнезелёных растений [3]. Из-под снега выходят растения с ещё зелёными «зимними» и первыми (1-2мя) «весенними» листьями, развернувшимися с осени и ещё не закончившими свой рост.

«Зимние» листья к концу апреля завядают, а «весенние» - заканчивают своё формирование и отмирают к середине мая. Следующие «весенние» листья нового годичного прироста начинают развёртываться с начала апреля, в начале - середине мая достигают полного развития и постепенно завядают к началу июня. «Летние» по структуре листья развёртываются с середины апреля до начала июня. По И. Г. Серебрякову, в сентябре на одном растении G. urbanum могут находиться летние листья, раскрывшиеся в мае, 4-5 зимних листьев, раскрывшихся в июле и августе [h]. Продолжительность развития листа от развёртывания до достижения максимального размера составляет 1,5 месяца, а ещё через 15 дней эти листья отмирают [4-6].

К настоящему времени исследования по содержанию витаминов в органах растений рода Geum с учётом сезонной динамики крайне малочисленны и фрагментарны. В связи с использованием гравилатов в фармацевтической, дубильно-экстрактовой, фармакологической, парфюмерной отраслях промышленности особый интерес представляют сведения о накоплении витаминов в органах гравилатов с учётом ритма их сезонного развития.

Целью настоящей работы явилось установление оптимальных сроков накопления витаминов органами гравилатов в зависимости от ритмов их сезонного развития.

В задачу работы входило исследование влияние ритмов сезонного развития на содержание витаминов в цветах, листьях, корнях *G. urbanum* и *G. rivale*.

МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ

Объектами исследования были листья, корни и соцветия гравилата городского (Geum urbanum L.) и гравилата речного (Geum rivale L.). Сбор растений осуществлялся в окрестностях г. Белгорода в разные периоды вегетации 2014-2015 гг. Метод определения витамина С базировался на методике Б. П. Плешкова [7]. Метод основан на способности аскорбиновой кислоты восстанавливать в кислой среде индикатор синего цвета - 2,6дихлорфенолиндофенол – до лейкоформы,

при этом аскорбиновая кислота окисляется в дегидроаскорбиновую кислоту. Определение витаминов А и Е осуществлялся путём обращёно-фазной высокоэффективной жидкостной хроматографии [8].

Все опыты проводили в 4- кратной повторности. В таблицах и на рисунках приведены средние значения и стандартные ошибки [9]. Парные сравнения и степень их достоверности осуществляли по критерию Стьюдента.

ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В работе сделана попытка установления зависимости накопления витаминов в органах растений рода Geum от фазы сезонного развития. В литературе наиболее часто приводятся данные, отражающие содержание витаминов в органах гравилатов, учитывающие среднее значение. Л. А. Юрченко, С. И. Василькевич указывают среднее содержание витамина С в листьях составляет G. urbanum − 123 мг% [10], по сведениям, взятых из других источников, количество витамина С у листьев обоих видов - 100 мг% [11]. Из материалов Т. А. Моревой следует, что в листьях G. urbanum аскорбиновой кислоты содержится 80,09 мг %, G. rivale L. – 27, 41 мг % [12]. И. А. Панкова указывает, что в период с мая по октябрь содержание витамина С в листьях *G. urbanum* составляет от 67,2 до 201

мг % [13]. М. М Ильин констатирует, что С – витаминоносность листьев G. urbanum колеблется в пределах: 94,5 мг % – 105,9мг % и 117мг % [14]. Из исследований Р. К. Алиева и др., следует, что листья G. urbanum содержат витамина C - 94,5 - 105,9 мг %, G. rivale -102 - 117 мг% [15]. Вместе с тем, нам не известны работы, в которых изучалось бы содержание витаминов в листьях растений видов рода Geum с учётом ритма сезонного развития их органов.

Наши исследования показали, что содержание витамина C в листьях G. urbanum в зависимости от сезонности колеблется в следующих пределах: 22,4 мг % - 83,7 мг %, в листьях G. rivale: 43,2 мг % – 71,7 мг % соответственно (Табл. 1).

Таблица 1

Table 1

Содержание витаминов в листьях гравилата городского и гравилата речного в зависимости от сезона года (2014-2015 гг.)

Vitamin content in the leaves of G. urbanum and G. rivale in Relation to the season (2014-2015)

	Relation to the season (2014-2013)							
	Гравилат городской G. urbanum				Гравилат речной G. rivale			
Анализиру- емый показатель Indicator	Апрель-Март April-March	Июль July	Ноябрь November	Январь Јапиагу	Map T March	Июль July	Ноябрь November	Январь January
Витамин А	17,2±0,	44,6±1,	36,1±	24,9±	18,0±0,	44,3±1,	39,4±	25,5±0,
Vitamin A	67	72	1,51	1,08	48	58	1,90	7
Витамин Е	13,6±0,	80,5±2,	59,3±	30,2±	17,5±1,	83,1±1,	57,7±	21,5±0,
Vitamin E	27	15	1,18	1,36	49	78	1,18	46
Витамин С	51,5±1,	22,4±0,	83,7±	39,6±	55,4±	43,2±1,	71,7±	46,9±1,
Vitamin C	98	91	1,96	1,62	2,83	58	4,42	68

Примечание: Витамин A - MKZ/Z, витамины E, C - MZ%

Note: Vitamin A - mcg/g, vitamin E, C - mg%

Осенью (ноябрь) во время подготовки растения к состоянию зимнего покоя в клетках листьев гравилатов откладывается большое количество витамина С. Максимальная концентрация витамина С отмечена в «зимних» листьях, имеющая разницу в сравнении с «летними» листьями у *G. urbanum* – в 3,7 раз, у *G. rivale* – в 1,7 раза.

Наибольшие показатели содержания витаминов A и E в листьях G. urbanum и G. rivale наблюдаются в июле. «Летние» листья G. urbanum содержат витамина A в 2,6 раза больше по сравнению с «весенними», а листья *G. rivale* - в 2,5 раза соответственно. Показатели витамина Е возросли в «летних» листьях по сравнению с «весенними» у G. *urbanum* – в 5,9 раза, *G. rivale* – в 4,7 раза. Из полученных результатов можно сделать вывод, что для протекания физиологических процессов, связанных с образованием семян, подготовки к периоду зимнего покоя накопление витаминов А и Е в листьях гравилатов происходит преимущественно в первой половине лета в «летних» листьях, а витамина C - осенью в «зимних» листьях. Показатели относительно содержания витаминов А и Е в листьях гравилатов противоречат исследованиям, основывающимся на утверждении, что растения наиболее богаты витаминами весной, т. к. «летние» листья демонстрируют большую их концентрацию в сравнении с «весенними». Полученные результаты дают основание суверенностью говорить, что к моменту созревания семян содержание большинства витаминов в листьях уменьшается.

На примере листьев *G. urbanum* и *G. rivale* относительно концентрации витамина С не нашло подтверждение положение И. А. Панковой [13] о том, что во время цветения витаминность листьев снижается, но снова возрастает к концу вегетации. Апрель ознаменовался цветением гравилатов на территории Белгородской области в период 2014-2015 гг.

Уменьшение концентрации витамина С в листьях гравилатов в летний период связано с его расходованием в ходе энергетических процессов цветения.

Увеличение содержания витаминов А и Е по месяцам в листьях *G. urbanum* L. и *G. rivale* L. можно выразить через следующую закономерность: апрель> январь> ноябрь>

июнь, а витамина С: июнь> январь> апрель> ноябрь.

Произведённые нами анализы «весенних» листьев, вышедших из-под снега, показали уменьшение количественных показателей витаминов А и Е (в 1,5 раза) на фоне увеличившейся концентрации витамина С. В зимний период растение исчерпало запасы питательных веществ и витаминов.

Исходя из результатов проведённых исследований, можно сделать вывод, что показатели содержания витамина С в листьях гравилатов наиболее высокие в ноябре - в «зимних» листьях, витаминов A и E – в июне - в «летних» листьях. Кроме того, витамины A, E, C в листьях зимующих растений G. urbanum L. и G. rivale L. сохраняются в условиях низких температур под снежным покровом и не подвержены значительному разрушению. Повышение витамина С в растениях, произрастающих пониженных температурах, имеет огромное биологическое значение, так как позволяет организму противостоять вредному действию низких температур.

В отличие от витамина С содержание других витаминов в растениях при пониженной температуре уменьшается.

Анализ данных позволяет делать что сезонные изменения могут инициировать физиологические процессы, способствующие изменению скорости накопления витаминов. Вместе c следует особо подчеркнуть, морфологические физиологические И различия «летних», «зимних» и «весенних» формаций листьев гравилатов разной сопровождаются также накопительной способностью витаминов в разные сезоны

При анализе распределения витаминов согласно расположения листовой пластинки относительно стебля, удалось установить следующую закономерность: в стеблевых листьях отмечается большая концентрация витаминов A, E и C по сравнению с прикорневыми (Табл. 2).

Исходя из результатов, представленных в табл. 2, удалось выявить наибольшие расхождения витаминности в стеблевых листьях *G. rivale* L. и *G. urbanum* по сравнению с прикорневыми (в 1,5 раза) относительно витамина Е. Вероятно, это происходит потому, что в стеблевых и прикорневых листьях,

находящихся в разных ярусах, может происходить разная скорость протекания физиологических процессов. В стеблевых и прикорневых листьях, находящихся в разных ярусах, может происходить разная скорость протекания физиологических процессов. Верхние листья, по мнению С. Гребенского [16], отличаются от нижних пониженным содержанием воды, органических кислот и никотина, повышенным — крахмала и белка. Верхние листья характеризуются содержани-

ем более мелких клеток. В них относительно больше протоплазмы, чем в клетках нижних листьев. Поэтому обмен веществ в верхних листьях происходит более интенсивно, чем в нижних. Верхние листья дышат интенсивнее, чем нижние (при расчёте на вес). Соответственно и концентрация не только многих ферментов, но и витаминов выше в верхних листьях [16].

Таблица 2

Содержание витаминов в стеблевых и прикорневых листьях гравилата городского и гравилата речного (июнь 2014 г.)

Table 2

Vitamin content in stem leaves and basal leaves of *G. urbanum* and *G. rivale* (June 2014)

Анализиру- емый показатель Indicator	Гравилат го G. urba	-	Гравилат речной G. rivale		
	Стеблевые листья Stam leaves	Прикорневые листья Basal leaves	Стеблевые листья Stam leaves	Прикорневые листья Basal leaves	
Витамин A Vitamin A	48,4±1,77	45,4±0,98	85,8±1,95	45,9±1,18	
Витамин E Vitamin E	95,0±6,1	65,3±4,3	82,8±6,39	54,7±2,55	
Витамин С Vitamin C	43,1±1,3	35,2±1,69	98,8±7,56	96,8±6,1	

Примечание: Витамин A - MKZ/Z, витамины E, C - MZ%

Note: Vitamin A - mcg/g, vitamin E, C - mg%

По И. А. Панковой [13] в июле верхние стеблевые листья содержали аскорбиновой кислоты 89,7 мг %, нижние — 73 мг %. Таким образом, литературные данные значительно выше полученных нами показателей, что связано с эколого-ценотическими и другими условиями обитания растений.

Из проведённых исследований следует, что накопление витаминов в листьях *G. rivale* и *G. Urbanum* происходит в динамическом режиме, задаваемом сезоном, который действует на ритмический характер изменения скорости их накопления.

Следующим направлением нашего исследования являлось изучение содержания витаминов в корнях гравилатов в связи с ритмом сезонного развития. В образовании главных и придаточных корней, а также корневищ проявляется определённая ритмичность: корни закладываются под узлами, их заложение отстаёт от формирования листьев. На новом годичном приросте моноподиаль-

ного побега, приподнятого над землёй, заложение придаточных корней начинается в июле и продолжается до октября, прерываясь зимой. За счёт сокращения этих корней побег прижимается к почве или втягивается в неё и становится корневищем. За это время успевают заложиться корни под всеми «летними» листьями. В конце апреля - мае формируются корни под «зимними» листьями. Под «весенними» листьями корни закладываются в июне [17; 18].

Из исследований Р. К. Алиева, Н. Д. Алиева, А. Х. Рахимова [15] следует, что витамин Е в корневищах гравилата речного отсутствует. Из результатов наших опытов можно сделать вывод, что витамин Е (токоферол) содержится в корневищах *G. rivale* и *G. urbanum*. Наибольшая его концентрация отмечается в марте (Табл. 4).

И. А. Панкова без учёта сезонной динамики отмечает, что относительно витамина С в корнях G. urbanum - 47,3мг% [13].

Из результатов наших опытов можно сделать вывод, что витамин Е (токоферол) содержится в корневищах *G. rivale* и *G. urbanum*. Наибольшая его концентрация отмечается в марте (Табл. 4). Содержание аскорбиновой кислоты в корнях *G. urbanum* наиболее высокое весной, в период их отрастания [18]. В дополнение к исследованиям авторов, можно констатировать, что в период

зимнего покоя содержание витамина С в корнях *G. rivale* и *G. urbanum* достигает максимума. Витамин А и Е хорошо сохраняется в корнях гравилатов при низких температурах под снежным покровом. Мы проследили динамику накопления витаминов в корнях *G. rivale* и *G. urbanum* в зависимости от сезона года (Табл. 3).

Таблица 3

Содержание витаминов в корнях гравилата городского и гравилата речного

Table 3

Vitamin content in the roots of G. urbanum and G. rivale

Анализируемый показатель Indicator	Гравилат городской G. urbanum			Гравилат речной G. rivale		
	Мар т March	Ноябрь November	Январь January	Мар т March	Ноябрь November	Январь January
Витамин A Vitamin A	8,2±0,54	1,1±0,20	3,1±0,47	11,4±1,20	8,9±0,50	10,7±0,40
Витамин E Vitamin E	9,6±0,50	2,8±0,29	1,4±0,24	14,0±0,24	5,1±0,70	4,8±1,0
Витамин С Vitamin C	4,7±0,27	8,2±0,54	11,7±1,6	5,2±0,41	7,04±0,50	11,7±1,60

Примечание: Витамин A – мкг/г, витамины E, C – мг%

Note: Vitamin A - mcg/g, vitamin E, C - mg%

Из вышесказанного можно сделать вывод, что в корнях гравилатов максимальная концентрация витаминов A и E отмечается в марте, витамина C – в январе.

Цветы гравилатов используют для технических и парфюмерных целей: в качестве отдушки туалетных мыл [19]. Гравилаты в условиях Белгородской области цветут около 40 дней. Исходя из полученных нами

данных, можно сделать вывод, что содержание витаминов в соцветиях достаточно высокое (Табл. 4).

В начале цветения (май) концентрация витаминов Е и С минимальная. Далее (июнь) происходит её значительное увеличение. Относительно витамина А тенденция накопления витаминов в соцветиях противоположная.

Таблица 4

Содержание витаминов в соцветиях гравилата городского и гравилата речного

Table 4

Vitamin content in the blossoms	s of <i>G. ur</i>	banum and G. rivale
---------------------------------	-------------------	---------------------

Анализируемый показатель	Гравилат : <i>G. urb</i>	-	Гравилат речной G. rivale		
Indicator	Май Мау	Июнь June	Май Мау	Июнь June	
Витамин A Vitamin A	26,1±1,48	21,9±0,68	34,3±0,95	30,1±0,94	
Витамин E Vitamin E	35,9±4,61	47,5±3,45	42,4±1,58	53,1±1,76	
Витамин С Vitamin C	25,3±1,48	35,2±1,69	27,8±1,15	35,2±1,69	

Примечание: Витамин A – мкг/г, витамины E, C – мг%

Note: Vitamin A - mcg/g, vitamin E, C - mg%

ЗАКЛЮЧЕНИЕ

Проведённые исследования позволяют сделать следующие выводы:

- наибольшее содержание витаминов в *Geum urbanum* и *Geum rivale* характерно относительно витаминов A и E для «летних» листьев, витамина С для «зимних»;
- в стеблевых листьях отмечается большая концентрация витаминов A, E и C по сравнению с прикорневыми;
- витамины A и E, C в листьях Geum urbanum и Geum rivale сохраняются под глубоким слоем снежного покрова при низких температурах воздуха, т. о. показатель содержания витаминов A, E, C в зимний период остаётся достаточно высоким;
- наибольшая концентрация витамина Е (токоферол) в корнях *G. rivale* и *G. urbanum* отмечается в марте. Содержание ас-

корбиновой кислоты в корнях наиболее высокое - весной, в период их отрастания;

– в начале цветения (май) концентрация витаминов Е и С в соцветиях минимальная. Далее (июнь) происходит её увеличение.

Относительно витамина A тенденция накопления витаминов в соцветиях противоположная;

– содержание витаминов A и E, C в листьях *Geum urbanum* и *Geum rivale* выше, чем в корнях и соцветиях.

В заключении следует подчеркнуть, что приведённые исследования открывают дальнейшие перспективы изучения и учёта сезонной дифференциации в накоплении витаминов лекарственными растениями *Geum urbanum* и *Geum rivale*. Время и место накопления витаминов в органах растения фактически определяет срок их заготовления.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Шабельская О.Ф. Физиология растений. Минск: Высшая школа, 1987. 320 с.
- 2. Колотилова А.И., Глушанков Е.П. Витамины (химия, биохимия и физиологическая роль). Л.: Издательство ленинградского университета, 1976. 248 с.
- 3. Петров К.А., Софронова В.Е., Чепалов В.А., Перк А.А., Максимов Т.Х. Сезонные изменения содержания фотосинтетических пигментов у многолетних травянистых растений криолитозоны // Физиология растений. 2010. Т. 57. N2. С. 192-199.
- 4. Петухова Л.В. Некоторые анатомические особенности Geum urbanum L // Ростовые вещества и рост растений. Калинин. гос. ун-т. Калинин, 1968-1974. Вып. 3. Калинин, 1974. С. 34-41.
- 5. Серебряков И.Г. Морфология вегетативных органов высших растений. М.: Сов. наука, 1952. 391 с.
- 6. Серебряков И.Г. О ритме сезонного развития растений подмосковных лесов // Вестник МГУ. 1947. N6. C. 75-108.
- 7. Плешков Б.П. Практикум по биохимии растений. Киев: Наукова думка, 1976. 334 с.
- 8. Премиксы. Методы определения витаминов A, D, E. Введ. 01. 01. 97 // Комбикорма. Ч.5. М.: ИПК, Издво стандартов, 2000. 160 с.
- 9. Лакин Г.Ф. Биометрия. М.: Высшая школа, 1990. 352 c
- 10. Юрченко Л.А., Василькевич С.И. Пряности и специи. Минск: Полымя, 1989. 224 с.
- 11. Флора Азербайджана. Том 5. Rosaceae-

- Leguminosae DJVU. Баку: Изд-во АН Азербайджанской ССР, 1954. 580 с.
- 12. Морева Т.А. Опыт первичной интродукции гравилата (Geum L.) в Ленинградской области // Растительное сырье. М.; Л., 1961. Вып. 7: Таннидоносные растения. С. 202-223.
- 13. Панкова И.А. Травянистые С витаминоносы // Растительное сырьё СССР / Под ред. Ильина М.М. М. Л.: Ботанический институт АН СССР, 1949. Т.2. Натуральные растения. 56 с.
- 14.Сырьё СССР / Под ред. Ильина М.М. М., Л, Т. 2. Натуральные растения. 1957. 582 с.
- 15.Алиев Р.К., Алиев Н.Д., Рахимов А.Х. Материалы к исследованию корневищ гравилата речного // Доклады Азербайджанской АН ССР. Баку, 1961. T.XVII. 550 с.
- 16. Гребенский С. Биохимия растений. Львов. Изд-во Львовского ун-та. 1964. 270 с.
- 17.Блинова К.Ф. Гравилаты как таннидные растения. // Сборник научных трудов Ленингр. химико фармацевт. ин—та. Л., 1957. Т.2. С. 80-88.
- 18. Цыбулько В.С., Карпухина А.М, Жмурко В.В., Мазнюк С.Н. Содержание витаминов у растений в связи с их фотопериодической реакцией // Физиология и биохимия культурных растений, 1989, N 3. C. 478-487.
- 19.Гроссгейм А.А. Флора Кавказа. Том V. Rosaceae Leguminosae. М.,Л.: Изд-во АН СССР, 1952. 453 с.

REFERENCES

1.Shabel'skaya O.F *Fiziologiya rastenii* [Plant Physiology]. Minsk, Vysshaya shkola Publ., 1987. 320 p. (In

Russian)

2.Kolotilova A.I., Glushankov E.P. Vitaminy (khimiya,

biokhimiya i fiziologicheskaya rol') [Vitamins (chemistry, biochemistry and physiological function)]. Leningrad, Leningrad University Publ., 1976. 248 p. (In Russian)

- 3.Petrov K.A., Sofronova V.E., Chepalov V.A., Perk A.A., Maksimov T.K. Seasonal changes in the content of photosynthetic pigments in perennial grasses of cryolithic zone. Fiziologiya rastenii [Russian Journal of Plant Physiology]. 2010. vol. 57, no. 2, pp. 192-199. (In Russian)
- 4.Petukhova L.V. Some anatomic features of Geum urbanum L. Rostovyie veshchestva i rost rasteniy [Growth substances and plant growth]. Kalinin, 1968-1974. iss. 3. Kalinin State University Publ., 1974. pp. 34-41. (In Russian)
- 5.Serebryakov I.G. Morfologiya vegetativnykh organov vysshikh rasteniy: uchebnoye posobiye dla unversitotov [Morphology of the vegetative organs of higher plants: A textbook for university students]. Moscow, Sovetskaya nauka Publ., 1952. 391 p. (In Russian)
- 6.Serebryakov I.G. On the seasonal development rhythm of Moscow-area wood plants. Vestnik MGU [Bulletin of the Moscow University]. 1947, no. 6. pp. 75-108. (In Russian)
- 7.Pleshkov B.P. *Praktikum po biokhimii rastenii* [A hands-on workshop in the plant biochemistry]. Kiev, Naukova dumka Publ., 1976. 334 p.
- 8. Premiksy. Metody opredeleniya vitaminov A, D i E. Vvedeno 01. 01. 97 [Premixes. Determination methods for vitamins A, D, E. Introduced on 01. 01. 97]. Kombikorma [Mixed feeds]. Part 5. Moscow, Further Training Institute, Standards Publ., 2000. 160 p. (In Russian)
- 9.Lakin G.F. *Biometriya* [Biometrics]. Moscow, Vysshaya shkola Publ., 1990. 352 p. (In Russian)
- 10. Yurchenko L.A., Vasilkevich S.I. *Prianosti i spetsiyi* [Spices and Spicery]. Minsk, Polymya Publ., 1989. 224

p. (In Russian)

- 11. Azerbaijan's flora. Vol. 5. Rosaceae–Leguminosae DJVU. Baku, Azerbaijan SSR Academy of Sciences Publ., 1954. 580 p. (In Russian)
- 12. Moreva T.A. An experience of initial introduction of Geum L. in the Leningrad region. Rastitelnoye syrye [Plant raw materials]. Moscow, Leningrad, 1961. iss 7. Tannide-bearing plants. pp. 202-223. (In Russian)
- 13. Pankova I.A. Herbal Vitamin C-bearing plants. Rastitelnoye syrye SSSR [Plant raw materials in the USSR]. Moscow- Leningrad. Botanical Institute of the USSR Academy of Sciences, 1949. vol. 2. 56 p. (In Russian)
- 14. Ilyin M.M., ed. *Syrye SSSR* [USSR raw materials]. Moscow-Leningrad, vol. 2. 1957. 582 p.
- 15. Aliev R.K., Aliev N.D., Rakhimov A.Kh. Materials on the investigation of the Geum rivale roots. *In:* Doklady Azrebaijanskoy AN SSR [Proc. of the Azerbaijan SSR Academy of Sciences]. Baku, 1961, Vol. XVII. 550 p. (In Russian)
- 16. Grebenskiy S. *Biokhimiya rasteniy* [Plant biochemistry]. Lviv, Lviv University Publ., 1964. 270 p. (In Russian)
- 17. Blinova K.F. Geum species as tannide-bearing plants. *In:* Sbornik nauchnykh trudov Leningradskogo khimiko-farmatsevticheskogo instituta. [Trans. of Leningrad chemical and pharmaceutical Institute]. Leningrad, 1957, vol. 2. pp. 80-88. (In Russian)
- 18. Tsybulko V.S., Karpukhina A.M., Zhmurko V.V., Mazniuk S.N. Vitamin content in plants in relation to their photoperiodic reaction. Fisiologiya i biokhimiya kulturnykh rasteniy [Physiology and biochemistry of cultivated plants]. 1989, no. 3. pp. 478-487. (In Russian) 19. Grossgeim A.A. *Flora Kavkaza* [Flora of Caucasia]. Moscow-Leningrad, USSR Academy of Sciences Publ., vol. V. 1952. 453 p. (In Russian)

СВЕДЕНИЯ ОБ АВТОРЕ

Принадлежность к организации

Татьяна В. Бурченко — к.б.н., преподаватель, Областное государственное автономное профессиональное образовательное учреждение «Белгородский педагогический колледж» (ОГАПОУ БПК), тел. +7(4722) 21-45-54, ул. Макаренко, 1Б, кв. 21, г. Белгород, Россия. e-mail: tanya.burchenko@yandex.ru

Критерии авторства

Татьяна В. Бурченко собрала материал для исследования, провела исследования, проанализировала данные, написала рукопись и несет ответственность за плагиат.

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.
Поступила 25.11.2016
Принята в печать 28.12.2016

AUTHOR INFORMATION Affiliations

Tatiana V. Burchenko – Candidate of Sciences (Biology), lecturer at the Belgorod teachers' training college, a regional state independent institution for professional training Phone +7(4722) 21-45-54, no 1B, Makarenko street, apt. 21, Belgorod, Russia. e-mail: tanya.burchenko@yandex.ru

Contribution

Tatyana V. Burchenko collected the materials for the study, conducted the research, analyzed the data, wrote the manuscript and is responsible for avoiding the plagiarism.

Conflict of interest

The author declares no conflict of interest.

Received 25.11.2016
Accepted for publication 28.12.2016