СССР: Кавказ. - М.: Наука, 1966. - С. 35-42. **10.** Сафронов И.Н. Палеогеоморфология Северного Кавказа. - М.: Недра, 1972. - 158 с. **11.** Тумаджанов И.И. Древняя пустыня в Нагорном Дагестане // Бот. журнал. - 1966. - Т. 51, N 6. - С. 784-791. **12.** Тумаджанов И.И. Ботанико-географические особенности высокогорного Дагестана в связи с палеогеографией плейстоцена и голоцена // Бот. журнал. - 1971. - Т. 56, N 9. - С. 1239-1251.

УДК 581.52.07

ВЛИЯНИЕ ЗАГРЯЗНЕННОСТИ ПОЧВ НЕФТЕПРОДУКТАМИ НА РАЗНООБРАЗИЕ И ЧИСЛЕННОСТЬ ВИДОВ РАСТЕНИЙ ОКРЕСТНОСТЕЙ МЕСТОРОЖДЕНИЯ «ИЗБЕРБАШ»

© ₂₀₁₀ Халимбекова А.М.

Дагестанский государственный технический университет

Статья посвящена исследованию влияния нефтезагрязнений на разнообразие и численность видов растений для песчаных и супесчаных почв окрестностей месторождения «Избербаш».

The article is dedicated to the searching of oil-pollutions' influence for the variety and quantity of the sandy and mixed sandy soils of the "lzberbash" deposit field.

Ключевые слова: биоразнообразие, нефтезагрязнения, буровые вышки, доминанты.

Key words: biovariety, oil-pollutions, boring tower, dominants.

Создание научно обоснованной стратегии охраны природы связано с сохранением биологического разнообразия как основы устойчивого функционирования отдельных экосистем и биосферы в целом [4].

Исследование влияния загрязненности почв нефтепродуктами на разнообразие и численность видов растений были проведены для наиболее распространенных типов почв окрестностей месторождения «Избербаш».

Доминирующие формы растений на песчаных субстратах – псаммофиты. Степная растительность представлена лишь песчаными вариантами на разбитых песках, в сочетании с зарослями псаммофитов. В этих ассоциациях участвуют в большом количестве виды Petrosimonia (P. oppositifolia, P. brachiata, P. triandra) и Salsola crassa. Среди этих основных доминантов в травостое реже попадаются Suaeda microphylla, Camphorosma lessingii и некоторые другие. Эти участки вследствие сильного антропогенного давления (выпас, эксплуатация буровых вышек и т.д.) крайне выбиты и засорены (преимущественно рогоголовником). В весенний период отмечается сильным развитием однолетних злаков, таких как Eremopyrum orientale, Bromus mollis, Anisantha sterilis и эфемероидом – Poa bulbosa [2].

Часто доминатом травостоя является Artemisia taurica, с участием основных степных элементов, таких как Agropyron desertorum, Stipa capillata, Kochia prostrate. Среди однолетников значительную роль играют Bromus mollis, Trigonella arcuata и эфемероид Poa bulbosa. Из других видов, которые встречаются реже, можно отметить Alyssum turkestanicum, Ceratocarpus arenarms, Meniocus linifolius. В таких группировках можно выделить типичных 19 видов.

Флористический состав участка, где отмечается непосредственное влияние буровых вышек, представлен 23 видами. Количество видов в зоне влияния возрастает за счет появления сорных видов (Chenopodium album, Tnbulus terrestris, Amaranthus retroflexus, Xanthium spinosum, Polygonum aviculare, Alhagi pseudalhagi) [2]. Доминирующими по всем показателям являются Artemisia taurica и эфемеры: Bromus mollis, Alyssum turkestanicum, Veronica praecox, Poa bulbosa.

В зоне влияния буровых вышек эти эфемеры по показателям обилия в два и более раза превосходят данные этих же видов в естественных участках степи [3]. После высыхания эфемеров основу травостоя составляют Artemisia taurica и Kochia prostrata, для которых также отмечается

уменьшение участия в отличие от естественных участков. Из состава травостоя выпали такие типичные степные элементы, как *Stipa capilata* и *Agropyron desertorum* (табл. 1). Выпадение степных элементов происходит вследствие техногенного воздействия.

Проведенные в ходе нашей работы исследования позволяют сделать вывод, что на изменение растительного покрова окрестностей месторождения основное влияние оказывает антропогенное воздействие, обусловленное не столько эксплуатацией скважины, сколько использованием территории в сельскохозяйственных целях. В видовом составе растений доминируют рудеральные и обычные виды, которые наиболее устойчивы к разного рода воздействиям, обусловленным деятельностью человека.

Таблица 1 Численность и встречаемость основных видов растений

Виды растений	I участок (зона влияния)		II участок (вне зоны влияния)	
Биды растении	численность	встречаемость, в %	численность	встречаемость, в %
Agropyron desertorum	_	_	1,15	45,00
Alyssum turkestanicum	6,47	100,00	0,33	26,60
Artemisia taurica	3,67	100,00	5,66	100,00
Bromus mollis	13,82	100,00	0,80	53,30
Ceratocarpus arenarius	0,32	22,50	0,05	5,53
Chenopodium album	0,23	13,36	_	_
Kochia prostrata	1,86	55,32	0,85	76,40
Meniocus linifolius	0,06	6,63	3,40	3,86
Petrosimonia oppositifolia	0,10	10,00	0,13	11,13
Poa bulbosa	4,46	73,39	1,97	46,20
Stipa capillata	_	_	0,65	50,00
Trigonella arcuata	0,47	20,00	1,13	53,30
Veronica praecox	4,26	86,60	0,80	33,60

Отрицательное влияние на растительный покров месторождение может оказать при аварийных ситуациях.

Для оценки стабильности, устойчивости растительных сообществ двух исследуемых участков необходимо сравнить их биоразнообразие. Для этого нами определены доминантные (Pi > 0,1), субдоминантные (0,01 > Pi < 0,1) и незначительные виды растений (Pi < 0,01), индексы разнообразия и однородности сообществ по Симпсону [3].

В результате проведенных ботанических исследованиий и полученных данных были получены значения меры значимости каждого вида (Рі) в сообществе в зоне влияния нефтяных загрязнений и вне такой зоны на песчаных и супесчаных почвах. Результаты приводятся в таблицах 2 и 3.

 Таблица 2

 Ранжирование растений в зоне влияния месторождения

Ранг	Виды растений	Численность	Pi	Pi^2
1	Bromus mollis	13,82	0,27	0,073
2	Anisantha sterilis	10,46	0,21	0,042
3	Alyssum turkestanicum	6,47	0,13	0,016
4	Poa bulbosa	4,46	0,09	0,008
5	Veronica praecox	4,26	0,08	0,007
6	Artemisia taurica	3,67	0,07	0,005
7	Eremopyrum orientale	2,13	0,04	0,002
8	Kochia prostrata	1,86	0,04	0,001
9	Lepidium perfoliatum	1,32	0,03	0,001
	Сумма	51,03		0,155

Сумма

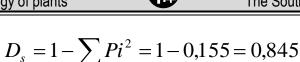


Таблица 3 Ранжирование растений в зоне влияния месторождения

	• •			
Ранг	Виды растений	Численность	Pi	Pi^2
1	Meniocus liniifolius	3,40	0,14	0,019
2	Agropyron desertorum	1,15	0,05	0,002
3	Trigonella arcuata	1,13	0,05	0,002
4	Alyssum turkestanicum	0,33	0,01	0,00018
5	Ephedra distachya	0,13	0,01	2,8E-05
6	Petrosimonia oppositifolia	0,13	0,01	2,8E-05
7	Phlomis tuberosa	0,13	0,01	2,8E-05

$$D_s = 1 - \sum Pi^2 = 1 - 0.153 = 0.847$$

 $E = D_s / S = 0.845 / 19 = 0.045$

 $E = D_s / S = 0.845 / 24 = 0.037$

Мера сходства сообществ: $12 \cdot 2 / (23+19) = 0,57$.

Исследовав таблицы можно сказать, что:

- 1) территория в зоне влияния нефтяных загрязнений месторождения представлена 3 доминантами (Bromus mollis, Anisantha sterilis, Alyssum turkestanicum), 6 субдоминантами (Poa bulbosa, Veronica praecox, Artemisia taurica, Eremopirum onentale, Kochia prostrata, Lepidmm perfoliatum) и 14 незначительными видами;
- 2) территория вне зоны влияния загрязнения представлена 1 доминантным видом (Meniocus linifolius), 3 субдоминантами (Agropyron desertorum, Trigonella arcuata, Alyssum turkestanicum) и 15 незначительными видами.

Необходимо отметить, что при техногенном воздействии произошла практически полная смена доминантных и субдоминантных видов растительности (только Alyssum turkestanicum из доминантных видов перешел в субдоминанты). Мера сходства сообществ – 0,57.

Рассчитанные показатели индекса разнообразия (D_s) по Симпсону для двух зон позволяют отнести и территорию, подверженную техногенному воздействия (D_s= 0,845) и территорию вне воздействия ($D_s = 0.847$) к сообществам с высоким биоразнообразием.

Рассчитав индексы равномерности распределения (Е) и представив результаты таблиц графически (рис. 1), можно сделать вывод, что наиболее благоприятная и устойчивая ситуация просматривается вне зоны влияния за счет наибольшей выравненности (Е = 0,045) численности растений. Такая равномерность распределения подчеркивает устойчивость данного сообщества, в то время как в зоне влияния значительное доминирование первых трех видов («ремонтников») говорит не только об идущем процессе борьбы за территорию и минеральные ресурсы, но и о возможной скорой смене роли растений в процессе подготовки территории для возобновления естественного ландшафта.

0.113

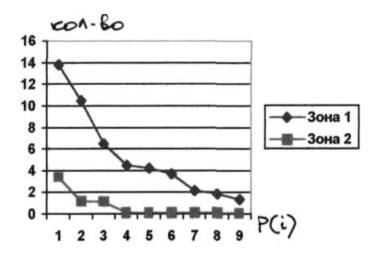


Рис. 1. Кривые доминирования обоих участков: 1 – в зоне влияния; 2 – вне зоны влияния.

Библиографический список

1. Гродзинский М.Д. Методика оценки устойчивости геосистем антропогенным воздействиям. // Физическая география и геоморфология. – Киев: Высшая школа, 1986. – С. 14-32. 2. Галушко А.И. Флора Северного Кавказа. – Т.1-3. – Ростов, 1980. 3. Гасанов Ш.Ш. Основы рационального природопользования. – Махачкала, 1999. – 96 с. 4. Дваладзе Т.Ш., Поздняков А.В., Самуйленков М.Ю. К методике регионального экологического прогноза при эксплуатации нефтегазовых месторождений. // Исследования экологогеографических проблем природопользования для обеспечения территориальной организации и устойчивости развития нефтегазовых регионов России: Теория, методы и практика. – Нижневартовск, 2000. – С. 23-29.