Сельскохозяйственная экология Agricultural ecology

Юг России: экология, развитие. №3, 2008

The South of Russia: ecology, development. №3, 2008

СЕЛЬСКОХОЗЯЙСТВЕННАЯ ЭКОЛОГИЯ

УДК 631.6:551.585.53(470.67)

ИСПОЛЬЗОВАНИЕ МЕТОДОВ ФИТОМЕЛИОРАЦИИ НА ДЕГРАДИРОВАННЫХ ПАСТБИЩАХ ТЕРСКО-КУМСКОЙ НИЗМЕННОСТИ

© 2008. Усманов Р.З., Осипова С.В. Джалалова М.И., Бабаева М.А. Прикаспийский институт биологических ресурсов ДНЦ РАН

Для восстановления проективного покрытия деградированных ареалов и приостановления расширения очагов движущихся песков нами был использован метод фитомелиорации. Для эксперимента были подобраны наиболее устойчивые и ценные по кормовым качествам культуры - Кохия простертая и Житняк гребенчатый.

For restoration of a projective covering of the degraded areas and of the centers of moving sand stop we used a method of phytoamelioration. For experiment the steadiest and valuable cultures on fodder qualities Kochia prostrate and Agropyron pectinatum have been picked up.

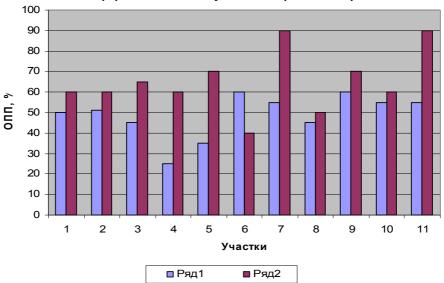
В регионе Северо-Западного Прикаспия циклическое долгосрочное изменение климатических условий в 1940-1950-х годах привело к снижению устойчивости пастбищных экосистем; чрезмерные и необоснованные антропогенные нагрузки, особенно усилившиеся с конца 1960-х годов, наложились на эту неблагоприятную климатическую тенденцию и привели к катастрофическим экологическим последствиям [2, 3].

Исследования в этом плане весьма важны, поскольку антропогенные воздействия на природные системы все более усиливаются и подчас принимают угрожающий характер. Это относится и к изучаемому региону Терско-Кумской низменности, где за последние годы в результате бесхозяйственного отношения нерадивых руководителей, усиления техногенной и пастбищной нагрузки происходит опустынивание с деградацией ресурсов растительного и животного мира. Возникла потребность в изучении факторов, участвующих в формировании продуктивности техногенно нарушенных и функционирующих систем и их экологической стабилизации.

Одним из основных направлений исследования экологических проблем данной территории является имеющая особое значение разработка мелиоративных основ борьбы с антропогенным опустыниванием [4]. Ареалы территорий, подверженных антропогенному опустыниванию, расширяются, охватывая пустынные, пустынно-степные и степные экосистемы [1].

Главный естественный критерий современного распространения процессов антропогенного опустынивания — это те районы, где довольно четко снижается биологическая продуктивность, развита эрозия почв, наблюдается замена растительных формаций худшими по составу и качеству видами. Известно, что выпас, а тем более перевыпас, оказывают как прямое (стравливание, вытаптывание), так и косвенное (через изменение среды) воздействие на растительный и почвенный покров. При этом конкурентное взаимоотношение ценопопуляций складывается в пользу в меньшей степени поедаемых видов и в большей мере адаптивно защищенных от вытаптывания и изменяющихся условий среды, что и является началом развития процесса мутации.

Сельскохозяйственная экология


Agricultural ecology

Юг России: экология, развитие. №3, 2008

The South of Russia: ecology, development. №3. 2008

Тенденциями перестройки структуры пастбищной дигрессии на территориях отгонного животноводства, зависевшие до 90-х годов от перевыпаса в осенне-зимний период, после 90-х годов стали: интенсивный выпас скота в летние месяцы, затопление больших площадей приморской зоны и резкое снижение атмосферных осадков – усиление процессов аридизации.

Ряд 1 – контрольный участок; ряд 2 – опытный участок.

Рис. 1. Общее проективное покрытие фитомассы

Стравливание пастбищ, чрезмерно высокая плотность выпасаемого овцепоголовья и техноге нная нагрузка на почвы Прикаспийского региона привели к увеличению площади оголенных участков и очагов движущихся песков, доля которых в структуре земель из года в год увеличивается. Проективное покрытие исследуемого региона снизилось до 40-45%, а на деградированном ареале — до 26-29%. Пастбищные экосистемы Северо-Западного Прикаспия обладают довольно высоким биологическим потенциалом и способны при умеренной деградации восстанавливаться естественным путем при предоставлении им отдыха. Для восстановления сильно деградированных пастбищ, где коренная растительность полностью изменилась или уничтожена, требуется длительный срок и специальные мероприятия, такие, как фитомелиорация и введение систем пастбищеоборотов. Для восстановления проективного покрытия деградированных ареалов и приостановления расширения очагов движущихся песков нами используется метод фитомелиорации.

Фитомелиорация, как прием создания заново либо обогащения низкоурожайных пастбищ кормовыми растениями, обоснована наличием в деградированных экосистемах значительного невостребованного ресурсного потенциала и возможностью реализовать его растениями, способными произрастать в данных условиях [6]. Для эксперимента были подобраны аборигенные культуры, из которых, по нашим расчетам, самыми устойчивыми и ценными по кормовым качествам стали Кохия простертая (Прутняк) и Житняк гребневидный.

Из сравнительного анализа следует отметить, что у рассматриваемых видов при совместном произрастании конкуренция за влагу сглаживается благодаря пространственно-временной дифференциации их экологических ниш. Так, житняк по виду водного питания является омбрафитом, приспособленным к использованию влаги атмосферных осадков, а прутняк, являясь трихогидрофитом, использует дополнительную влагу из глубинных слоев почвогрунта (конденсационную, реже влагу капиллярной каймы).

Вместе с тем по мере приближения увлажненности верхних слоев к влажности завядания конкуренция за влагу между этими видами не будет происходить благодаря различиям их феноритмотипов: у житняка после созревания семян наступает летний полупокой (начало июля). Прут-

Сельскохозяйственная экология

Юг России: экология, развитие. №3, 2008

Agricultural ecology

The South of Russia: ecology, development. №3. 2008

няк, снизив темпы роста, в наиболее засушливый период формирует соцветие и вступает в фазу цветения (середина октября). Не менее значимо отношение прутняка и житняка к засолению почвогрунтов. Наиболее оптимальными в автоморфных условиях Северо-Западного Прикаспия являются для них незасоленные светлокаштановые полупустынные почвы и закрепленные пески.

Эксперимент проводился на территории Кочубейской биосферной станции, расположенной на Терско-Кумской низменности близ пос. Кочубей в Тарумовском районе Республики Дагестан. Площадь занимаемой территории 1 га. Посев производили ранней весной. Для исследования были произвольно отобраны 10 участков размером 1 m^2 , где были определены общее проективное покрытие (ОПП), высота травостоя, вес $\mathrm{r/m}^2$. Параллельно были исследованы 10 аналогичных участков на контрольной территории. На исследуемой территории наблюдаются значительные отличия в общем проективном покрытии между контрольными и опытными участками (рис. 1). Пределы колебаний ОПП на контрольном участке – 20-60%, тогда как на опытном участке – 50-90%.

Исследование продуктивности фитомассы показало значительный перевес житняка и прутняка на опытном участке в отличие от контрольного. Наибольший процент изменчивости наблюдался у прутняка 58%, тогда как у житняка он составлял всего 10 %. Изменения массы полыни на обоих участках незначительны (табл. 1, 2).

Продуктивность фитомассы, г/м² (контроль)

Таблииа 1

Виды расте- ний	I	Ш	III	IV	٧	VI	VII	VIII	IX	Х
Полынь	6,3	28,9	36,6	-	-	68,6	64,4	7,1	33,7	-
Прутняк	23,5	27,6	-	12,3	20,6	6,5	19,8	35,5	42,1	29,9
Житняк	3,0	-	13,1	62,4	47,1	-	-	-	-	24,7
Разнотравье	0,3	0,9	-	-	-	-	-	6,5	16,8	1,1
Мертвая мас- са	8,1	22,9	51,8	23,1	43,6	34,2	46,6	8,4	11,8	28,3
Общая масса	41,2	80,3	101,5	97,7	111, 3	109,3	130,8	57,5	104,2	83,9

Продуктивность фитомассы, г/м² (опыт)

Таблица 2

Виды растений	I	II	III	IV	V	VI	VII	VIII	IX	Χ
Полынь	9,47	15,8	-	3,6	8,3	-	22,9	-	-	3,2
Прутняк	43,9	32,2	79,42	16,9	63,9	-	37,2	20,9	169,2	58,9
Житняк	20,6	20,6	8,5	-	27,4	-	29,5	82,1	7,1	-
Разнотравье	1,6	-	2,4	28,4	14,3	45,9	0,2	-	0,5	0,2
Мертвая масса	23,7	33,7	20,2	41,0	46,9	0,9	53,1	96,8	80,7	32,3
Общая масса	99,4	102,4	110,5	89,8	160,8	46,8	142,8	199,8	257,4	94,6

Высокий уровень продуцирования обеспечивают эти виды и на засоленных почвах (светло-каштановые почвы, автоморфные солонцы). Так при типичном для региона хлоридном засолении [5] продуктивный оптимум житняка ограничивается содержанием хлор-иона в слое 30-100 см в количестве -0.1%, прутняка -0.2%.

Таким образом, в результате исследования нам удалось экспериментально доказать возможность создания высокопродуктивных, адаптивных агроценозов пастбищного и противоэрозионного назначения. Улучшение деградированных кормовых угодий путем подсева вышеуказанных засухо—солеустойчивых растений повышает продуктивность кормовых угодий в 2,5-5 раз.

Это позволяет нам говорить о том, что устойчивое управление засушливыми землями может означать сохранение и поддержание продуктивности земель, их биоразнообразия, что способствует реградации пастбищных экосистем и возобновлению продуктивности растительных сообществ.

Сельскохозяйственная экология

Agricultural ecology

Юг России: экология, развитие. №3, 2008

The South of Russia: ecology, development. №3, 2008

Библиографический список

1. Бананова В.А. Современное состояние и прогнозирование опустынивания на территории Калмыцкой АССР // Бюлл. МОИП, биол., 1990. Вып. 7. — С. 108-118. 2. Виноградов Б.В., Капцов А.Н., Кулик К.Н. Прогнозорование динамики разбитых песков Черных земель Калмыкии по обучающей последовательности аэрокосмических снимков. // Биота и природная среда Калмыкии. М. Элиста: ТОО «Коркис», 1995. — С.159-268. 3. Виноградов Б.В., Глазовский Н.Ф., Габуншина Э.Б. Программа действий по борьбе с опустыниванием в Калмыкии. // Аридные экосистемы. 1996. №2-3. — С.103-111. 4. Залибеков З.Г. Основы направления исследований по экологическим проблемам Прикаспийской низменности // Экологические проблемы Прикаспийской низменности. — Махачкала, 1991. 5. Ковда В.А. Биосфера, почвы и их использование // Доклады X Международного конгресса почвоведения. — М. 1974. — С.120. 6. Лачко О., Лачко О. Аридные экосистемы, 1995, Т. 1. №1. —С. 16-21.