Геоэкология Geoecology

Юг России: экология, развитие. №2, 2008 The South of Russia: ecology, development. №2,

e South of Russia. ecology, development. Mez, 2008

– в зоне отгонных летних пастбищ (субальпийском и альпийском поясах) – регламентированный выпас скота, поверхностное улучшение сенокосов и пастбищ с посевом пастбищевыносливых трав и подкормки растений минеральными удобрениями, залужение эродированных склонов, борьба с селевыми потоками.

Проблема повышения плодородия почв и эффективного использования земель вполне разрешима при ответственном и комплексном подходе к ее решению. В этом убеждает опыт передовых хозяйств и убедительные примеры развития аграрного сектора экономики в других странах мира, которые, имея в несколько раз меньше пашни на душу населения, чем в Дагестане и весьма примитивные природные условия, полностью обеспечивают себя продовольствием, а часть сельскохозяйственной продукции экспортируют другим странам. Но все-таки, учитывая, что Дагестан — малоземельная, аграрная республика, а площади пахотопригодных земель очень ограничены, не следует отчуждать из сельхозугодий высокобонитетные пахотопригодные земли на несельскохозяйственные цели.

Библиографический список

1. Абасов М.М., Гасанов Г.Н., Абдурахманов Г.М., Баламирзоев М.А. Экологическое состояние почвенного покрова Дагестана. – Махачкала: Юпитер, 2007. – 131 с. 2. Айдамиров Д.С. Совершенствование эксплуатации оросительных систем. Махачкала: Юпитер, 2003. – 521 с. 3. Аджиев А.М., Баламирзоев М.А., Мирзоев Э.М.-Р. и др. Почвенные ресурсы Дагестана, их охрана и рациональное использование. – Махачкала: Изд-во МСХ РД, 1998. – 327 с. 4. Баламирзоев М.А. Эффективное использование предгорных земель. – Махачкала: Даг. изд-во, 1982. – 96 с. 5. Баламирзоев М.А. Земля – наше богатство. – Махачкала: Даг. изд-во, 1987. – 64 с. 6. Баламирзоев М.А., Мирзоев Э.М.-Р., Саидов А.К. Экологические аспекты деградации почв на территории Дагестана и проблемы рационального использования земель // Проблемы экологии горных территорий. Сб. науч. трудов ИЭГТ КБНЦ РАН. – Нальчик, 2004. – С. 25-29. 7. Диалло Х.А. Человеческий фактор // Наша планета. Том 6, № 5. 1994. – С. 10. 8. Керимханов С.У., Баламирзоев М.А., Белолинский В.А. Эрозия почв в предгорьях Дагестана и меры ее предотвращения // «Известия СКНЦ ВШ» (сер. естеств. науки). – Ростов-на-Дону. № 4. 1977. – С. 23-26. 9. Мирзоев Э.М.-Р., Алишаев М.Г. Теоретические основы рассоления почв дождеванием и освоение трудномелиорируемых земель Дагестана. – Махачкала: Изд-во Даг. ФАН СССР. 1990. – 166 с. 10. Сефиханов Ш.С. Вопросы землепользования и реформирования земельных отношений в Республике Дагестан. // Материалы Всероссийской научной конференции «Почвы аридных регионов, их динамика и продуктивность в условиях опустынивания». – Махачкала: Изд-во ДНЦ РАН, 2007. – C. 27-39.

УДК 631.4: 634.8

ХАРАКТЕРИСТИКА АМПЕЛОЭКОТОПОВ ЦЕНТРАЛЬНОГО ПРЕДГОРЬЯ ДАГЕСТАНА

© 2008. **Магомедов Г.Г., Власова О.К.** Прикаспийский институт биологических ресурсов ДНЦ РАН

Дана характеристика тепло-, влагообеспеченности, гранулометрического и элементного состава почв. Отмечено усиление биосинтеза и накопления ряда биологически активных веществ в винограде предгорья.

The characteristics warmly and a moisture content, a granulometric and element compound of soils is given. Intensifying of biosynthesis and accumulation of some biologically active agents in grapes of foothills is shown.

Концепция перехода страны к устойчивому развитию определяет приоритетные направления, комплексное и сбалансированное решение задач социально-экономического развития. Стабильное развитие невозможно без эффективного и рационального использования биологических и агроландшафт-

Геоэкология Geoecology

Юг России: экология, развитие. №2, 2008

The South of Russia: ecology, development. №2, 2008

ных ресурсов. Программой развития виноградарства России намечается значительное расширение насаждений винограда.

В предгорьях Дагестана в силу вертикальной поясности почв и сложности рельефа местности наблюдается большая пестрота почвенного покрова. Наибольшее распространение здесь получили бурые лесные, коричневые, темно-каштановые, каштановые, светло-каштановые почвы тяжелосуглинистого и среднесуглинистого механического состава.

Цель данной работы — сравнительное изучение тепло-, влагообеспеченности, почв участков различной вертикальной поясности для выявления оптимальных ампелоэкотопов, где растение может максимально использовать свои потенциальные биологические возможности.

Для исследования выбраны наиболее интересные в экологическом аспекте микрорайоны нижнего предгорья, под виноградом сорта Ркацители. Это грузинский наиболее распространенный технический сорт среднего периода созревания. Относится к группе сортов бассейна Черного моря. На опытных участках заложены почвенные разрезы.

Участок 1 находится на территории ГУП «Каякентский» Каякентского района на высоте 50 м над уровнем моря в равнинной зоне. Климат умеренно теплый. Сумма активных температур (САТ) − 3725°С. Среднегодовое количество осадков 293 мм. Почвы каштановые, орошаемые, среднемощные, тяжелосуглинистые на морских среднесуглинистых отложениях. Почвенный разрез характеризуется:

А пах. 0-22 см. Сухой, темноокрашенный в почвенном профиле, средне-комковатый, рыхлый, пронизан корнями винограда разной толщины и корнями разных растений. Переход в другой горизонт постепенный. Тяжелый суглинок.

В 22-40 см. Свежий, серовато-буроватый, комковато-глыбистый, встречаются корни винограда и различных растений, ходы дождевых червей, затеки гумусовых веществ. Средний суглинок.

С 40-70 см. Свежий, серовато-бежевый, бесструктурный, пористый. Механический состав от легкого суглинка до песка.

Участок 2 находится на территории ГУП «Красный Октябрь» Сергокалинского района на высоте 200 м над уровнем моря в предгорной зоне. Климат умеренно теплый. CAT -3355°C. Среднегодовое количество осадков 330 мм. Почвы коричневые, орошаемые, карбонатные, среднемощные, среднесуглинистые на делювиальных отложениях. Почвенный разрез характеризуется:

А пах. 0-25 см. Сухой, темно-коричневый, зернисто-комковатый, рыхлый. Встречается обилие корней винограда и разложившиеся корни других растений. Переход в нижний горизонт плавный. Средний суглинок.

В 25-50 см. Холодит руку. Серовато коричневый, зернисто-комковатый, плотнее предыдущего, пронизан корнями винограда разной толщины и корнями других растений, еле заметны гумусовые подтеки. Переход в другой горизонт неровный. Легкий суглинок.

С 50-80 см. Свежий, цвет морского песка, мелко-комковатой структуры, рыхлый. Встречаются единичные корни винограда. Песок.

Участок 3 находится на территории СПК «Алходжакентский» Каякентского района на высоте 265 м над уровнем моря, в предгорной зоне. Климат умеренно теплый. САТ $-3200-3300^{\circ}$ С. Среднегодовое количество осадков 330-340 мм. Почвы коричневые, среднесутлинистые. Они формируются при непромывном и периодическом водном режиме на карбонатных и бескарбонатных породах.

А пах. 0-20 см. Сухой, темно-серый, среднезернистый, рыхлый. Встречается обилие корней винограда и других растений на различных стадиях разложения. Переход в другой горизонт постепенный. Средний суглинок.

В 20-45 см. Влажноватый, буровато-коричневый, уплотненный, хорошо оструктуренный. Характеризуется накоплением глины, окислов железа, алюминия и других веществ за счет вымывания их из вышележащего горизонта. Переход в другой горизонт плавный. Средний суглинок. С 45-70 см. Холодит руку, светло-коричневый, слабо-уплотненный, мелко-комковатый. Встречаются единичные корни винограда и других растений.

При полевом обследовании на всех опытных участках признаки засоления почвы отсутствовали, грунтовые воды не обнаружены.

Геоэкология Geoecology

Юг России: экология, развитие. №2, 2008

The South of Russia: ecology, development. №2, 2008

Представленная характеристика позволяет сделать вывод о том, что исследованные экотопы различны как по тепло-, влагообеспеченности, так и по гранулометрическому составу почв, их сложению и структуре.

Таблица 1

	Участки, высота над уровнем моря, САТ, осадки		
Компоненты	первый, 50м,	второй, 200м,	третий, 265 м,
	3725°С, 293 мм	3355 °С, 330 мм	3250°С, 340мм
Гумус, %	2,0	2,1	2,3
Макроэлементы, мг/кг:			
Азот	63,0	70,0	42,0
Калий	530,0	620,0	690,0
Фосфор	40,0	47,0	51,0
Сумма	633,0	737,0	783,0
Микроэлементы, мг/кг:			
Свинец	8,4	9,4	10,0
Кадмий	0,0	0,0	0,2
Медь	5,0	3,9	6,4
Цинк	6,8	4,3	3,9
Марганец	5,0	12,0	9,6
Никель	2,7	2,7	3,1
Сумма	27,9	32,3	33,2

В образовании почвы и ее плодородии исключительно важную роль играет гумус. Он является фактором образования агрономически ценной структуры, оказывает большое влияние на физико-химические свойства почвы. Выполненное исследование гумусированности почв выявило незначительные различия. При определении химического состава средней пробы почвы, взятой на глубине 0-60 см, отмечены существенные отличия как в суммарном, так и в индивидуальном содержании подвижных форм обнаруженных компонентов. Суммарное содержание макро- и микроэлементов в почвах с повышением высоты расположения участков над уровнем моря возрастало за счет превалирования калия, фосфора, свинца, кадмия, марганца и никеля. Содержание цинка снижалось. Меньшая концентрация азота свойственна почвам третьего участка, меди – второго (табл. 1).

Выявленные особенности элементного состава почв, наряду с другими экологическими факторами, способны индивидуально и в совокупности влиять на физиологические и биохимические процессы изучаемого растения. На наш взгляд, наибольший интерес для его культивирования представляют экотопы, расположенные на высотных отметках 200 и 265м над уровнем моря. Об этом свидетельствовали и результаты исследования химического состава ягод. Выявлено, что на этих высотных отметках метаболизм виноградного растения направлен на усиление биосинтеза и накопления в ягодах сахаридов, кислот, фенольных веществ и других представителей антиоксидантного комплекса, в том числе рутина, аскорбиновой кислоты, сопровождается большей аккумуляцией калия, фосфора, меди, цинка, марганца. Повышенное содержание перечисленных биологически активных веществ в ягодах увеличивает достоинства этой культуры.

При развитии виноградарства, предусмотренном специальной программой в Республике Дагестан на период до 2020 года, по-видимому, предпочтение должно быть отдано микрорайонам предгорной зоны. Такой подход позволит гарантировать более высокое качество свежего винограда и продуктов его переработки.

УДК 597-1.05:577.118

МИКРОЭЛЕМЕНТНЫЙ СОСТАВ ГРУНТОВ СЕВЕРНОЙ ЧАСТИ