УДК 50.53.054:631.445.4(470-13)

БИОДИАГНОСТИКА УСТОЙЧИВОСТИ ЧЕРНОЗЕМОВ ЮГА РОССИИ К ЗАГРЯЗНЕНИЮ ТЯЖЕЛЫМИ МЕТАЛЛАМИ

© 2011 Ярославцев М.В., Колесников С.И. Южный федеральный университет

По степени негативного воздействия на биологические свойства черноземов оксиды тяжелых металлов образуют следующий ряд: CrO₃ > CuO > PbO >= NiO. Наибольшую устойчивость проявляют черноземы обыкновенные, меньшую – типичные, еще меньшую – южные, и наименьшую – выщелоченные слитые. Такая последовательность определяется эколого-генетическими свойствами исследованных черноземов – реакцией среды и содержанием органического вещества.

By the degree of negative impact on the biological properties of chernozem heavy metals oxides the following series: $CrO_3 > CuO > PbO > = NiO$. Exhibit greater stability ordinary chernozems, lower – typical, even less - the southern, and the smallest – leached fused. Such a sequence is determined by genetic properties of the studied chernozems – the reaction of soil and the organic matter content.

Ключевые слова: черноземы, устойчивость, биодиагностика, загрязнение, тяжелые металлы.

Keywords: chernozems, sustainability, biodiagnostics, pollution, heavy metals.

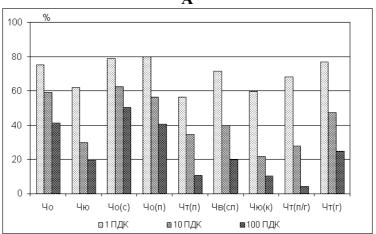
Почвенный покров юга России характеризуется уникальным разнообразием черноземов (табл. 1). При этом они значительно различаются по эколого-генетическим свойствам, а соответственно и по устойчивости к антропогенным воздействиям, в том числе к загрязнению тяжелыми металлами. Однако эти различия ранее изучены не были. В то же время знание этих особенностей очень важно, поскольку значительные территории, занимаемые на юге России черноземами, могут существенно различаться по устойчивости к загрязнению тяжелыми металлами, нефтью и нефтепродуктами, пестицидами и т.д. Это необходимо учитывать в сельскохозяйственной и природоохранной деятельности.

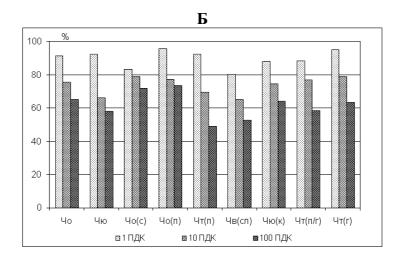
Цель работы – дать сравнительную оценку устойчивости разных типов и подтипов черноземов юга России к загрязнению Cr, Cu, Ni, Pb по биологическим показателям (в модельном эксперименте). Для решения поставленных задач был заложен ряд модельных опытов. Названия, места отбора для модельных опытов и свойства использованных черноземов представлены в табл. 1. Использовали почву из слоя 0-25 см. Именно в этом слое накапливается основное количество загрязняющих почву веществ. Исследовали Cr, Cu, Ni, Pb, так как именно этими металлами в значительной степени загрязнены почвы юга России [1]. Кроме того, выбранные тяжелые металлы (TM) интересны для сравнения – их ПДК составляют 100 мг/кг почвы. Использованы разработанные в Германии значения ПДК [2]. Во-первых, потому, что ПДК в почве валового содержания Cu и Ni в России отсутствуют; во-вторых, «российская» ПДК Pb зачастую не может быть использована, так как ее значение часто меньше фонового содержания Pb во многих почвах [3].

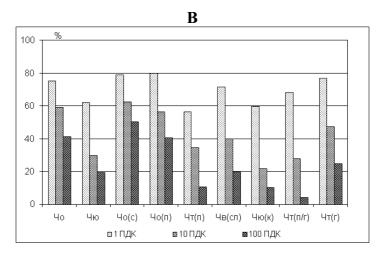
Изучали действие разных количеств ТМ в почве: 1, 10, 100 ПДК (100, 1000 и 10000 мг/кг соответственно). ТМ вносили в почву в форме оксидов: CrO₃, CuO, NiO, PbO, так как их значительная доля поступает в почву именно в этой форме [4], а также использование оксидов ТМ позволяет исключить воздействие на свойства почвы сопутствующих анионов, как это происходит при внесении солей металлов. Почву инкубировали в вегетационных сосудах в трехкратной повторности при комнатной температуре (20-22°C) и оптимальном увлажнении (60% от полевой влагоемкости). Состояние почв определяли через 30 суток после загрязнения. При оценке химического воздействия на почву этот срок является наиболее информативным [3].

Лабораторно-аналитические исследования выполнены с использованием общепринятых методов [5]. Определяли обилие бактерий рода *Azotobacter*, активность каталазы и дегидрогеназы, целлюлозолитическую активность, фитотоксические свойства почв и другие показатели. На основе наиболее информативных биологических показателей определяли интегральный показатель биологического состояния (ИПБС) почвы [3].

Общие вопросы General problems


Юг России: экология, развитие. №3, 2011 1


The South of Russia: ecology, development. N	23, 2	201	ľ
--	-------	-----	---


		Эколого-генет	генетические и эколого-биологические характеристики черноземов юга России	ческие характ	ерист	аки чернозем	ов юга Росси	5	
Ÿ	Почва	Условное обозначение почвы	Место отбора	Содержание гумуса, %	Hd	Грануло- метрический состав	Активность каталазы, мл О ₂ /г почвы за 1 мин	Активность дегидрогеназы, мг ТФФ/10 г почвы за 24 часа	Обилие бактерий рода <i>Azotobacter</i> , % обрастания
	Черноземы обыкновенные	Чо	Волгоградская область, Нехаевский район, окрестности п. Динамо	5,1	8,1	Тяжело- суглинистый	7,3	17,3	100
5.	Черноземы южные	Чю	Ростовская область, Каменский район, окрестности г. Каменск- Шахтинский	4,0	6,7	Тяжело- суглинистый	6,3	14,7	88
	Черноземы обыкновенные (североприазовские)	40(c)	Ростовская область, Октябрьский район, окрестности п. Персиановский	4,0	7,6	Тяжело- суглинистый	8,4	17,5	100
4.	Черноземы обыкновенные (предкавказские)	Чо(п)	Краснодарский край, Кущевский район, окрестности с. Кущевское	4,6	6,7	Тяжело- суглинистый	8,8	17,1	100
5.	Черноземы типичные (предкавказские)	(II)T	Краснодарский край, Усть- Лабинский район, окрестности г. Усть-Лабинск	3,5	6,9	Тяжело- суглинистый	4,4	14,8	100
6.	Черноземы выщелоченные слитые	Чв(сл)	Республика Адыгея, Красногвардейский район, окрестности с. Белое	5,1	6,3	Глинистый	8,2	13,6	94
7.	Черноземы южные (каштановые)	Чю(к)	Краснодарский край, Анапский район, окрестности п.Джигинка	3,2	7,7	Тяжело- суглинистый	3,3	16,6	86
%	Черноземы типичные (предгорные)	Чт(п/r)	Ставропольский край, Шпаковский район, окрестности с. Московское	3,3	8,3	Тяжело- суглинистый	5,2	14,3	100
.6	Черноземы типичные (горные)	${ m H}_{ m T}(\Gamma)$	Ставропольский край, Предгорный район, окрестности г. Кисловодск	5,3	6,8	Тяжело- суглинистый	. 7,7	15,2	16

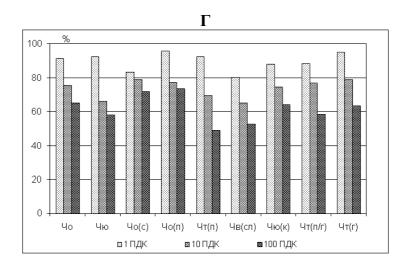

Таблица I

Рис. 1. Изменение ИПБС (% от контроля) черноземов юга России при загрязнении: А – хромом; Б – медью; В – никелем; Г – свинцом.

Условные обозначения: Чо – черноземы обыкновенные; Чю – черноземы южные; Чо(с) – черноземы обыкновенные (североприазовские); Чо(п) – черноземы обыкновенные (предкавказские); Чт(п) – черноземы типичные (предкавказские); Чв(сл) – черноземы выщелоченные слитые; Чю(к) – черноземы южные (каштановые); Чт(п/г) – черноземы типичные (предгорные); Чт(г) – черноземы типичные (горные).

В результате исследований установлено, что загрязнение исследованных черноземов оксидами ТМ приводит к ухудшению их состояния. В большинстве случаев наблюдалось достоверное уменьшение всех исследованных показателей, причем уменьшение зависело от природы элемента, его содержания в почве и свойств почвы.

По отношению к черноземам юга России оксиды TM образуют следующую последовательность: $CrO_3 > CuO > PbO >= NiO$. Аналогичная закономерность была получена ранее в исследованиях, проведенными по той же методике, с другими почвами юга России: серыми и бурыми лесными, каштановыми, бурыми полупустынными, дерново-карбонатными, песчаными и др. [6, 7]. В большинстве случаев для всех исследованных TM зарегистрирована прямая зависимость между содержанием в почве загрязняющего вещества и степенью снижения биологических показателей.

Черноземы юга России имеют неодинаковую устойчивость биологических свойств к загрязнению ТМ (рис. 1). Они образуют определенные ряды по степени ухудшения биологических свойств при загрязнении разными ТМ (ряды усреднены по дозам загрязняющего вещества): при загрязнении хромом: 4o(c) > 4o = 4o(n) > 4Tr(r) > 4B(cn) > 4wo > 4Tr(n/r) = 4r(n) > 4wo(k); при загрязнении медью: 4o(n) >= 4o(c) = 4r(r) >= 4o >= 4wo(k) >= 4r(n/r) > 4wo > 4r(n/r) = 4B(cn); при загрязнении никелем: 4o = 4r(n/r) > 4o(c) >= 4r(r) >= 4o(n) > 4r(n) = 4wo(k) >= 4wo > 4B(cn); при загрязнении свинцом: 4r(n/r) > 4o(c) >= 4r(r) >= 4o(n) > 4r(n) = 4wo(k) >= 4wo > 4w

Устойчивость почв к загрязнению TM зависит, прежде всего, от гранулометрического состава, кислотности почв и содержания гумуса. Именно эти факторы определяют подвижность TM в почве, соответственно, и степень влияния на биологические свойства почвы. По гранулометрическому составу все исследованные черноземы практически не отличаются друг от друга. Соответственно буферность зависела от комбинации двух других параметров – кислотности почвы и содержания в ней гумуса. Чем выше значение pH и больше гумуса, тем устойчивее почва к загрязнению TM. Так черноземы обыкновенные обладают и высоким содержанием гумуса, и высокими значениями pH, что обусловливает их большую буферность к загрязнению, чем черноземов южных и типичных.

низким значением pH (6,3) из исследованных черноземов обладают черноземы выщелоченные слитые. Вследствие этого, даже несмотря на высокое содержание гумуса (5,1%), они проявили наименьшую устойчивость к загрязнению ТМ. Это же касается и черноземов горных — на фоне высокого содержания гумуса (5,3%), они имеют невысокие значения реакции среды (pH=6,8). Поэтому они не столь устойчивы как другие черноземы, менее гумусированные, но более «щелочные».

Библиографический список

- Дьяченко В.В. Геохимия, систематика и оценка состояния ландшафтов Северного Кавказа. Ростов-на-Дону: Издательский центр «Комплекс», 2004. – 268 с.
- 2. Касьяненко А.А. Контроль качества окружающей среды. М.: Изд-во РУДН, 1992. 136 с.
- Колесников С.И., Казеев К.Ш., Вальков В.Ф. Экологическое состояние и функции почв в условиях химического загрязнения. – Ростов н/Д: Изд-во Ростиздат, 2006. – 385 с.
- 4. Кабата-Пендиас А., Пендиас Х. Микроэлементы в почвах и растениях. М.: Мир, 1989. 439 с.
- 5. Казеев К.Ш., Колесников С.И., Вальков В.Ф. Биологическая диагностика и индикация почв: методология и методы исследований. Ростов н/Д: Изд-во Рост. ун-та, 2003. 204 с.
- 6. Колесников С.И., Тлехас З.Р., Казеев К.Ш., Вальков В.Ф. Изменение биологических свойств почв Адыгеи при химическом загрязнении // Почвоведение. 2009. № 12. С. 1499-1505.
- Спивакова Н.А., Колесников С.И. Устойчивость почв сухих степей и полупустынь Юга России к химическому загрязнению // Биологическая диагностика экологического состояния почв Юга России / Отв. редактор К.Ш. Казеев. – Ростов-на-Дону. Изд-во «Эверест», 2010. – С. 213-231.

Bibliography

- Diyachenko V.V. Geochemistry, taxonomy and assessment of the landscapes of the northern Caucasus. Rostov. Pub.: "Complex" 2004. p. 268.
- Kasiyanenko A.A. Quality control of the environment. Moscow: Pub.: People's Friendship University 1992. p.136.
- Kolesnikov S.I., Isakov K. Sh., Valikov V.F. Ecological status and functions of soils under conditions of chemical pollution. – Rostov. Pub.:Rostizdat 2006 – p.385.
- 4. Kabata-Pendias A., Pendias H. Microelements in soils and plants. M: Mir 1989. p. 439
- 5. Kazeev K.Sh., Kolesnikov S.I., Valikov V.F. The biological diagnosis and indication of soil: a methodology and research methods.- Rostov. Pub: Rostov University 2003. p.204.
- Kolesnikov S.I., Tlekhas Z.R., Kazeev K.Sh., Valikov V.F. Change the biological properties of soil under condition chemical pollution in Adygea / / Soil Science. 2009. № 12. - p. 1499-1505.
- Spivakov N.A., Kolesnikov S.I. Stability of soils of dry steppes and semidesert of the southern Russia to chemical pollution // Biological diagnosis of the ecological status of soils of South Russia / Ed. Editor. Kazeev K.Sh. – Rostov Pub: "Everest", 2010. - p.213-231.